The purpose of this study was to investigate tenocyte mechanobiology after sudden-detraining and to examine the hypothesis that repeated peri-patellar injections of hyaluronic acid (HA) on detrained patellar tendon (PT) may reduce and limit detrained-associated damage in tenocytes. Twenty-four male Sprague-Dawley rats were divided into three groups: Untrained, Trained and Detrained. In the Detrained rats, the left tendon was untreated while the right tendon received repeated peri-patellar injections of either HA or saline (NaCl). Tenocyte morphology, metabolism and synthesis of C-terminal-propeptide of type I collagen, collagen-III, fibronectin, aggrecan, tenascin-c, interleukin-1β, matrix-metalloproteinase-1 and-3 were evaluated after 1, 3, 7 and 10 days of culture. Transmission-electronic-microscopy showed a significant increase in mitochondria and rough endoplasmic reticulum in cultured tenocytes from Detrained-HA with respect to those from Detrained-NaCl. Additionally, Detrained-HA cultures showed a significantly higher proliferation rate and viability, and increased synthesis of C-terminal-Propeptide of type I collagen, fibronectin, aggrecan, tenascin-c and matrix-metalloproteinase-3 with respect to Detrained-NaCl ones, whereas synthesis of matrix-metalloproteinase-1 and interleukin-1β was decreased. Our study demonstrates that discontinuing training activity in the short-term alters tenocyte synthetic and metabolic activity and that repeated peri-patellar infiltrations of HA during detraining allow the maintenance of tenocyte anabolic activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/03008207.2014.979166 | DOI Listing |
Histol Histopathol
September 2015
Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies-Department Rizzoli RIT and Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy.
Introduction: Having previously demonstrated that detraining affects patellar tendon (PT) proteoglycan content and collagen fiber organization, we undertook the present study with two aims: to improve knowledge on the adaptation of PT and its enthesis to detraining from a histological and histomorphometric point of view, and to investigate the hypothesis that repeated peri-patellar injections of hyaluronic acid (HA) on detrained PT may reduce and limit detrained associated-damage.
Methods: Twenty-four male Sprague-Dawley rats were divided into 3 groups: Untrained (n=6), Trained (n=6) (10 wks-treadmill) and Detrained (n=12). In the detrained rats, the left tendon was untreated while the right tendon received repeated peri-patellar injections of either HA or saline (NaCl).
Connect Tissue Res
February 2015
Laboratory of Biocompatibility, Technological Innovation and Advanced Therapy, Rizzoli RIT, Rizzoli Orthopedic Institute, Bologna , Italy .
The purpose of this study was to investigate tenocyte mechanobiology after sudden-detraining and to examine the hypothesis that repeated peri-patellar injections of hyaluronic acid (HA) on detrained patellar tendon (PT) may reduce and limit detrained-associated damage in tenocytes. Twenty-four male Sprague-Dawley rats were divided into three groups: Untrained, Trained and Detrained. In the Detrained rats, the left tendon was untreated while the right tendon received repeated peri-patellar injections of either HA or saline (NaCl).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!