Two different thienopyrroledione (TPD)-based small molecules (SMs) with different alkyl substitution positions were synthesized, and their photovoltaic properties are measured and compared to examine the effect of the alkyl substitution position on their optical, electrochemical, and photovoltaic properties. The use of TPD as an electron-accepting unit in conjugated SMs effectively lowers the highest occupied molecular orbital (HOMO) energy levels of the conjugated SMs and leads to high open-circuit voltage (VOC). The two SMs with n-hexyl group substituted at different positions exhibit almost identical optical and electrochemical properties in the pristine state. However, the crystallographic and morphological characteristics of the two SMs are significantly different, because they are blended with PC71BM. The SM in which n-alkyl groups are substituted at the central accepting unit exhibits a power conversion efficiency (PCE) of 6.0% with VOC=0.94 V, which is among the highest PCE values of TPD-based SM devices, whereas the SM with n-alkyl groups being substituted at the chain ends shows a moderate PCE value of 3.1%.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am505608sDOI Listing

Publication Analysis

Top Keywords

alkyl substitution
12
small molecules
8
high open-circuit
8
open-circuit voltage
8
voltage voc
8
photovoltaic properties
8
optical electrochemical
8
conjugated sms
8
n-alkyl groups
8
groups substituted
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!