Oxidized phospholipids (oxPLs) are components of oxidized LDL (oxLDL). It is known that oxLDL activates expression of a series of atherogenic genes and their oxPLs contribute to their biological activities. In this study we present the effects of 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) and 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) on gene expression in RAW 264.7 macrophages using cDNA microarrays. PGPC affected the regulation of 146 genes, whereas POVPC showed only very minor effects. PGPC preferentially influenced expression of genes related to cell death, angiogenesis, cholesterol efflux, procoagulant mechanisms, atherogenesis, inflammation, and cell cycle. Many of these effects are known from studies with oxLDL or oxidized 1-hexadecanoyl-2-eicosatetra-5',8',11',14'-enoyl-sn-glycero-3-phosphocholine (oxPAPC), containing PGPC in addition to other oxPL species. It is known that POVPC efficiently reacts with proteins by Schiff base formation, whereas PGPC only physically interacts with its biological targets. POVPC seems to affect cell physiology to a great extent on the protein level, whereas PGPC gives rise to both the modulation of protein function and regulation on the transcriptional level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204898PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110486PLOS

Publication Analysis

Top Keywords

oxidized phospholipids
8
gene expression
8
expression raw
8
raw 2647
8
2647 macrophages
8
pgpc
6
effects
4
effects oxidized
4
phospholipids gene
4
expression
4

Similar Publications

Chemical communication between marine bacteria and their algal hosts drives population dynamics and ultimately determines the fate of major biogeochemical cycles in the ocean. To gain deeper insights into this small molecule exchange, we screened niche-specific metabolites as potential modulators of the secondary metabolome of the roseobacter, . Metabolomic analysis led to the identification of a group of cryptic lipids that we have termed roseoceramides.

View Article and Find Full Text PDF

The recent COVID-19 pandemic has set a strong quest for advanced understanding of possible tracks in abating and eliminating viral infections. In the view that several families of "pristine" small oxide nanoparticles (NPs) have demonstrated viricidal activity against SARS-CoV-2, we studied the effect of two NPs, with presumably different reactivity, on two viruses aiming to evaluate two "primary suspect" routes of their antiviral activity, either specific blocking of surface proteins or causing membrane disruption. The chosen NPs were non-photoactive 3.

View Article and Find Full Text PDF

Magnetoliposomes containing magnetite, soy lecithin, stigmasterol, and beta-sitosterol of the mean size minor than 160 nm were obtained by a scalable and green process using autoclave and sonication without organic solvents. The formation, size of the liposome, linkage, and encapsulation of the magnetite were evaluated by Cryo-TEM. The stability of magnetoliposomes after storage for 6 months at 4 °C was improved by liposome size, the ability of soy lecithin to preserve the magnetite phase against oxidation, pH, polydispersity index, and zeta potential.

View Article and Find Full Text PDF

Overweight and obesity (OWO) are linked to dyslipidemia and low-grade chronic inflammation, which is fueled by lipotoxicity and oxidative stress. In the context of pregnancy, maternal OWO has long been known to negatively impact on pregnancy outcomes and maternal health, as well as to imprint a higher risk for diseases in offspring later in life. Emerging research suggests that individual lipid metabolites, which collectively form the lipidome, may play a causal role in the pathogenesis of OWO-related diseases.

View Article and Find Full Text PDF

Melanoma is an aggressive cancer that has attracted attention in recent years due to its high mortality rate of 80%. Damage caused by oxidative stress generated by radical (type I reaction) and singlet oxygen, O (type II reaction) oxidative reactions may induce cancer. Thus, studies that aim to unveil the mechanism that drives these oxidative damage processes become relevant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!