Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present an unsupervised approach to segment optic cups in fundus images for glaucoma detection without using any additional training images. Our approach follows the superpixel framework and domain prior recently proposed in, where the superpixel classification task is formulated as a low-rank representation (LRR) problem with an efficient closed-form solution. Moreover, we also develop an adaptive strategy for automatically choosing the only parameter in LRR and obtaining the final result for each image. Evaluated on the popular ORIGA dataset, the results show that our approach achieves better performance compared with existing techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-319-10404-1_98 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!