Bone localization in ultrasound (US) remains challenging despite encouraging advances. Current methods, e.g. local image phase-based feature analysis, showed promising results but remain reliant on delicate parameter selection processes and prone to errors at confounding soft tissue interfaces of similar appearance to bone interfaces. We propose a different approach combining US strain imaging and envelope power detection at each radio-frequency (RF) sample. After initial estimation of strain and envelope power maps, we modify their dynamic ranges into a modified strain map (MSM) and a modified envelope map (MEM) that we subsequently fuse into a single combined map that we show corresponds robustly to actual bone boundaries. Our quantitative results demonstrate a marked reduction in false positive responses at soft tissue interfaces and an increase in bone delineation accuracy. Comparisons to the state-of-the-art on a finite-element-modelling (FEM) phantom and fiducial-based experimental phantom show an average improvement in mean absolute error (MAE) between actual and estimated bone boundaries of 32% and 14%, respectively. We also demonstrate an average reduction in false bone responses of 87% and 56%, respectively. Finally, we qualitatively validate on clinical in vivo data of the human radius and ulna bones, and demonstrate similar improvements to those observed on phantoms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-319-10404-1_45 | DOI Listing |
Cureus
December 2024
Department of Cardiology, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, IRN.
Pulmonary thromboembolism (PTE) is the third most common cause of acute cardiovascular disease, which can lead to high morbidity and mortality if left untreated. Anatomical and electrophysiological variations and obesity may complicate timely diagnosis and delay required management. While computed tomography pulmonary angiography (CTPA) remains the most accurate diagnostic tool, initial assessments using electrocardiography (ECG) or echocardiography can be helpful in early suspicion.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Gastrointestinal Surgery, The First Hospital of Wuhan City, No. 215 Zhong-shan Road, Qiaokou District, Wuhan City, Wuhan, 430022, PR China.
Background: Acute ankle sprains are among the most common injuries in children and are often associated with chondral avulsion fractures and ligament injuries. However, radiography may not be sufficiently accurate for assessing cartilage and ligament injuries in children. The primary purpose of this study was to evaluate the necessity of radiography in the diagnosis of acute ankle sprains in children.
View Article and Find Full Text PDFJ Magn Reson Imaging
January 2025
Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Background: Hemodynamic force (HDF) from cardiac MRI can indicate subclinical myocardial dysfunction, and help identify early cardiac changes in patients with Fabry disease (FD). The hemodynamic change in FD patients remains unclear.
Purpose: To explore HDF changes in FD and the potential of HDF measurements as diagnostic markers indicating early cardiac changes in FD.
Sci Rep
January 2025
Department of Ultrasound Medicine, The First Affiliated Hospital of Hebei North University, 12 Changqing Road, Zhangjiakou, 075000, China.
To research the value of Autostrain right ventricular (RV) technology in detecting and preventing right ventricular myocardial injury in patients undergoing breast cancer chemotherapy by providing an imaging basis for early identification. To examine the changes in various cardiac function parameters before and after chemotherapy, two-dimensional echocardiography was employed 48 h before chemotherapy, 48 h after the fourth cycle of chemotherapy, and 48 h after the eighth cycle of chemotherapy, respectively. The patients included those with breast cancer who underwent surgery and were primarily administered anthracycline-based chemotherapeutic drugs.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
January 2025
University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany.
Background: Pulmonary stenosis (PS) is common in congenital heart disease and an integral finding in Tetralogy of Fallot (TOF). Pulmonary regurgitation (PR) is more commonly found following surgery in repaired TOF. We aimed to evaluate the haemodynamic effects of PS and PR on cardiac physiology in a porcine model using cardiac magnetic resonance-based feature tracking (CMR-FT) deformation imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!