AI Article Synopsis

Article Abstract

Bone localization in ultrasound (US) remains challenging despite encouraging advances. Current methods, e.g. local image phase-based feature analysis, showed promising results but remain reliant on delicate parameter selection processes and prone to errors at confounding soft tissue interfaces of similar appearance to bone interfaces. We propose a different approach combining US strain imaging and envelope power detection at each radio-frequency (RF) sample. After initial estimation of strain and envelope power maps, we modify their dynamic ranges into a modified strain map (MSM) and a modified envelope map (MEM) that we subsequently fuse into a single combined map that we show corresponds robustly to actual bone boundaries. Our quantitative results demonstrate a marked reduction in false positive responses at soft tissue interfaces and an increase in bone delineation accuracy. Comparisons to the state-of-the-art on a finite-element-modelling (FEM) phantom and fiducial-based experimental phantom show an average improvement in mean absolute error (MAE) between actual and estimated bone boundaries of 32% and 14%, respectively. We also demonstrate an average reduction in false bone responses of 87% and 56%, respectively. Finally, we qualitatively validate on clinical in vivo data of the human radius and ulna bones, and demonstrate similar improvements to those observed on phantoms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-10404-1_45DOI Listing

Publication Analysis

Top Keywords

strain imaging
8
imaging envelope
8
power detection
8
soft tissue
8
tissue interfaces
8
envelope power
8
bone boundaries
8
reduction false
8
bone
6
robust bone
4

Similar Publications

Pulmonary thromboembolism (PTE) is the third most common cause of acute cardiovascular disease, which can lead to high morbidity and mortality if left untreated. Anatomical and electrophysiological variations and obesity may complicate timely diagnosis and delay required management. While computed tomography pulmonary angiography (CTPA) remains the most accurate diagnostic tool, initial assessments using electrocardiography (ECG) or echocardiography can be helpful in early suspicion.

View Article and Find Full Text PDF

Radiography may not be accurate in assessing acute ankle sprains in children.

J Orthop Surg Res

January 2025

Department of Gastrointestinal Surgery, The First Hospital of Wuhan City, No. 215 Zhong-shan Road, Qiaokou District, Wuhan City, Wuhan, 430022, PR China.

Background: Acute ankle sprains are among the most common injuries in children and are often associated with chondral avulsion fractures and ligament injuries. However, radiography may not be sufficiently accurate for assessing cartilage and ligament injuries in children. The primary purpose of this study was to evaluate the necessity of radiography in the diagnosis of acute ankle sprains in children.

View Article and Find Full Text PDF

Left Ventricular Hemodynamic Forces Changes in Fabry Disease: A Cardiac Magnetic Resonance Study.

J Magn Reson Imaging

January 2025

Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Background: Hemodynamic force (HDF) from cardiac MRI can indicate subclinical myocardial dysfunction, and help identify early cardiac changes in patients with Fabry disease (FD). The hemodynamic change in FD patients remains unclear.

Purpose: To explore HDF changes in FD and the potential of HDF measurements as diagnostic markers indicating early cardiac changes in FD.

View Article and Find Full Text PDF

To research the value of Autostrain right ventricular (RV) technology in detecting and preventing right ventricular myocardial injury in patients undergoing breast cancer chemotherapy by providing an imaging basis for early identification. To examine the changes in various cardiac function parameters before and after chemotherapy, two-dimensional echocardiography was employed 48 h before chemotherapy, 48 h after the fourth cycle of chemotherapy, and 48 h after the eighth cycle of chemotherapy, respectively. The patients included those with breast cancer who underwent surgery and were primarily administered anthracycline-based chemotherapeutic drugs.

View Article and Find Full Text PDF

Evaluating pulmonary stenosis and regurgitation impact on cardiac strain and strain rate in a porcine model via magnetic resonance feature tracking.

Int J Cardiovasc Imaging

January 2025

University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University, Robert-Koch-Str. 40, 37099, Göttingen, Germany.

Background: Pulmonary stenosis (PS) is common in congenital heart disease and an integral finding in Tetralogy of Fallot (TOF). Pulmonary regurgitation (PR) is more commonly found following surgery in repaired TOF. We aimed to evaluate the haemodynamic effects of PS and PR on cardiac physiology in a porcine model using cardiac magnetic resonance-based feature tracking (CMR-FT) deformation imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!