Background And Objectives: Thirty-five percent of children experience syncope at least once. Although the etiology of pediatric syncope is usually benign, many children undergo low-yield diagnostic testing. We conducted a quality improvement intervention to reduce the rates of low-yield diagnostic testing for children presenting to an emergency department (ED) with syncope or presyncope.
Methods: Children 8 to 22 years old presenting to a tertiary care pediatric ED with syncope or presyncope were included. We excluded children who were ill-appearing, had previously diagnosed cardiac or neurologic disease, ingestion, or trauma. We measured diagnostic testing rates among children presenting from July 2010 through October 2012, during which time we implemented a quality improvement intervention. Patient follow-up was performed 2 months after the ED visit to ascertain subsequent diagnostic testing and medical care.
Results: A total of 349 patients were included. We observed a reduction in the rates of low-yield diagnostic testing after our quality improvement intervention: complete blood count testing decreased from 36% (95% confidence interval 29% to 43%) to 16% (12% to 22%) and electrolyte testing from 29% (23% to 36%) to 12% (8% to 17%). Performance of recommended testing increased, such as electrocardiograms and pregnancy testing in postpubertal girls. Despite a reduction in diagnostic testing among children with syncope, patients were not more likely to undergo subsequent diagnostic testing or seek further medical care following their ED visit.
Conclusions: Implementation of a quality improvement intervention for the ED evaluation of pediatric syncope was associated with reduced low-yield diagnostic testing, and was not associated with subsequent testing or medical care.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1542/peds.2013-3833 | DOI Listing |
Pain
February 2025
Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Sociology, University of California, Irvine, CA 92697-5100.
In recent years, Brazil's non-White (Brown and Black) population became a numerical majority for the first time since the 19th century. Although we know this change was mostly due to racial reclassification, we do not know how such changes are related to skin color, the primary marker of race in Brazil. Using data from six Latin American Public Opinion Project (LAPOP), or America's Barometer, surveys from 2010 to 2023, we examine how changes in racial self-identification (White, Brown, or Black) are related to respondent skin color (light, medium, or dark).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.
Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of .
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.
Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA 02115.
This study presents the construction of a comprehensive spatiotemporal atlas of white matter tracts in the fetal brain for every gestational week between 23 and 36 wk using diffusion MRI (dMRI). Our research leverages data collected from fetal MRI scans, capturing the dynamic changes in the brain's architecture and microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!