During the last decade, significant research progress has been made in Arabidopsis thaliana in defining the molecular mechanisms behind the plant circadian clock. The circadian clock must have the ability to integrate both external light and ambient temperature signals into its transcriptional circuitry to regulate its function properly. We previously showed that transcription of a set of clock genes including LUX (LUX ARRHYTHMO), GI (GIGANTEA), LNK1 (NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED GENE 1), PRR9 (PSEUDO-RESPONSE REGULATOR 9) and PRR7 is commonly regulated through the evening complex (EC) night-time repressor in response to both moderate changes in temperature (Δ6°C) and differences in steady-state growth-compatible temperature (16-28°C). Here, we further show that a night-time-light signal also feeds into the circadian clock transcriptional circuitry through the EC night-time repressor, so that the same set of EC target genes is up-regulated in response to a night-time-light pulse. This light-induced event is dependent on phytochromes, but not cryptochromes. Interestingly, both the warm-night and night-time-light signals negatively modulate the activity of the EC night-time repressor in a synergistic manner. In other words, an exponential burst of transcription of the EC target genes is observed only when these signals are simultaneously fed into the repressor. Taken together, we propose that the EC night-time repressor plays a crucial role in modulating the clock transcriptional circuitry to keep track properly of seasonal changes in photo- and thermal cycles by conservatively double-checking the external light and ambient temperature signals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pcu144 | DOI Listing |
Plant Cell Physiol
March 2019
Functional Plant Research Unit, National Institute of Agrobiological Sciences (NIAS), Kannondai, Tsukuba, Japan.
EARLY FLOWERING3 (ELF3) functions as a night-time repressor required for sustaining circadian rhythms and co-ordinating growth and development in various plant species. The rice genome carries two ELF3 homologs, namely OsELF3-1 and OsELF3-2. Previous studies have suggested that OsELF3-1 has a predominant role in controlling rice photoperiodic flowering, while also contributing to the transcriptional regulation of rice floral regulators expressed in the morning.
View Article and Find Full Text PDFPlant Cell Physiol
September 2015
Laboratory of Molecular and Functional Genomics, School of Agriculture, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
Life cycle adaptation to seasonal variation in photoperiod and temperature is a major determinant of ecological success of widespread domestication of Arabidopsis thaliana. The circadian clock plays a role in the underlying mechanism for adaptation. Nevertheless, the mechanism by which the circadian clock tracks seasonal changes in photoperiod and temperature is a longstanding subject of research in the field.
View Article and Find Full Text PDFPlant Cell Physiol
December 2014
Laboratory of Molecular and Functional Genomics, School of Agriculture, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
During the last decade, significant research progress has been made in Arabidopsis thaliana in defining the molecular mechanisms behind the plant circadian clock. The circadian clock must have the ability to integrate both external light and ambient temperature signals into its transcriptional circuitry to regulate its function properly. We previously showed that transcription of a set of clock genes including LUX (LUX ARRHYTHMO), GI (GIGANTEA), LNK1 (NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED GENE 1), PRR9 (PSEUDO-RESPONSE REGULATOR 9) and PRR7 is commonly regulated through the evening complex (EC) night-time repressor in response to both moderate changes in temperature (Δ6°C) and differences in steady-state growth-compatible temperature (16-28°C).
View Article and Find Full Text PDFPlant Cell Physiol
May 2014
Laboratory of Molecular and Functional Genomics, School of Agriculture, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601 Japan.
An interlocking multiloop model has been generally accepted to describe the transcriptional circuitry of core clock genes, through which robust circadian rhythms are generated in Arabidopsis thaliana. The circadian clock must have the ability to integrate ambient temperature signals into the clock transcriptional circuitry to regulate clock function properly. Clarification of the underlying mechanism is a longstanding subject in the field.
View Article and Find Full Text PDFCell
January 2011
Laboratory for Systems Biology, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Hyogo, Japan.
Direct evidence for the requirement of delay in feedback repression in the mammalian circadian clock has been elusive. Cryptochrome 1 (Cry1), an essential clock component, displays evening-time expression and serves as a strong repressor at morning-time elements (E box/E' box). In this study, we reveal that a combination of day-time elements (D box) within the Cry1-proximal promoter and night-time elements (RREs) within its intronic enhancer gives rise to evening-time expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!