A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Endoplasmic reticulum resident protein 44 (ERp44) deficiency in mice and zebrafish leads to cardiac developmental and functional defects. | LitMetric

Endoplasmic reticulum resident protein 44 (ERp44) deficiency in mice and zebrafish leads to cardiac developmental and functional defects.

J Am Heart Assoc

Department of Physiology, University of Toronto, Ontario, Canada (D.Y.W., C.A., J.Y.L., P.S., N.B., S.S., P.H.B., B.C., X.Y.W., P.P.L., A.O.G.) Faculty of Medicine and Institute of Medical Science, University of Toronto, Ontario, Canada (S.E.R., F.D., K.N., P.H.B., X.Y.W., P.P.L., A.O.G.).

Published: October 2014

Background: Endoplasmic reticulum (ER) resident protein 44 (ERp44) is a member of the protein disulfide isomerase family, is induced during ER stress, and may be involved in regulating Ca(2+) homeostasis. However, the role of ERp44 in cardiac development and function is unknown. The aim of this study was to investigate the role of ERp44 in cardiac development and function in mice, zebrafish, and embryonic stem cell (ESC)-derived cardiomyocytes to determine the underlying role of ERp44.

Methods And Results: We generated and characterized ERp44(-/-) mice, ERp44 morphant zebrafish embryos, and ERp44(-/-) ESC-derived cardiomyocytes. Deletion of ERp44 in mouse and zebrafish caused significant embryonic lethality, abnormal heart development, altered Ca(2+) dynamics, reactive oxygen species generation, activated ER stress gene profiles, and apoptotic cell death. We also determined the cardiac phenotype in pressure overloaded, aortic-banded ERp44(+/-) mice: enhanced ER stress activation and increased mortality, as well as diastolic cardiac dysfunction with a significantly lower fractional shortening. Confocal and LacZ histochemical staining showed a significant transmural gradient for ERp44 in the adult heart, in which high expression of ERp44 was observed in the outer subepicardial region of the myocardium.

Conclusions: ERp44 plays a critical role in embryonic heart development and is crucial in regulating cardiac cell Ca(2+) signaling, ER stress, ROS-induced oxidative stress, and activation of the intrinsic mitochondrial apoptosis pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323785PMC
http://dx.doi.org/10.1161/JAHA.114.001018DOI Listing

Publication Analysis

Top Keywords

erp44
9
endoplasmic reticulum
8
reticulum resident
8
resident protein
8
protein erp44
8
mice zebrafish
8
role erp44
8
erp44 cardiac
8
cardiac development
8
development function
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!