WWOX, the common fragile site FRA16D gene product, regulates ATM activation and the DNA damage response.

Proc Natl Acad Sci U S A

The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel;

Published: November 2014

Genomic instability is a hallmark of cancer. The WW domain-containing oxidoreductase (WWOX) is a tumor suppressor spanning the common chromosomal fragile site FRA16D. Here, we report a direct role of WWOX in DNA damage response (DDR) and DNA repair. We show that Wwox deficiency results in reduced activation of the ataxia telangiectasia-mutated (ATM) checkpoint kinase, inefficient induction and maintenance of γ-H2AX foci, and impaired DNA repair. Mechanistically, we show that, upon DNA damage, WWOX accumulates in the cell nucleus, where it interacts with ATM and enhances its activation. Nuclear accumulation of WWOX is regulated by its K63-linked ubiquitination at lysine residue 274, which is mediated by the E3 ubiquitin ligase ITCH. These findings identify a novel role for the tumor suppressor WWOX and show that loss of WWOX expression may drive genomic instability and provide an advantage for clonal expansion of neoplastic cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226089PMC
http://dx.doi.org/10.1073/pnas.1409252111DOI Listing

Publication Analysis

Top Keywords

dna damage
12
wwox
8
fragile site
8
site fra16d
8
damage response
8
genomic instability
8
tumor suppressor
8
dna repair
8
dna
5
wwox common
4

Similar Publications

Acute pancreatitis (AP) is an inflammatory disease of the pancreas and a complex process involving multiple factors, with mitochondrial damage playing a crucial role. Mitochondrial dysfunction is now considered a key driver in the development of AP. This dysfunction often presents as increased oxidative stress, altered membrane potential and permeability, and mitochondrial DNA damage and mutations.

View Article and Find Full Text PDF

Background: By far, one of the best treatments for myocardial ischemia is reperfusion therapy. The primary liposoluble component of Danshen, a traditional Chinese herbal remedy, Tanshinone ⅡA, has been shown to have cardiac healing properties. The purpose of this work is to investigate the processes by which Tanshinone ⅡA influences myocardial ischemia-reperfusion injury (MIRI) in the H9C2 cardiac myoblast cell line, as well as the association between Tanshinone ⅡA and MIRI.

View Article and Find Full Text PDF

A Post-Mortem Molecular Damage Profile in the Ancient Human Mitochondrial DNA.

Mol Ecol Resour

January 2025

Research Group in Biological Anthropology, Biological Anthropology Unit, Department of Animal Biology, Vegetal Biology and Ecology, Universitat Autònoma de Barcelona, Barcelona, Spain.

Mitochondrial DNA (mtDNA) analysis is crucial for understanding human population structure and genetic diversity. However, post-mortem DNA damage poses challenges, that make analysis difficult. DNA preservation is affected by environmental conditions which, among other factors, complicates the differentiation of endogenous variants from artefacts in ancient mtDNA mix profiles.

View Article and Find Full Text PDF

Eurybiomic big cats are facing significant threats from poaching, which is driven by recreation, taxidermy and wildlife trade. Species identification and age estimation are important for effective conservation management and enforcement of wildlife protection regulations. In this study, we present novel comprehensive morphometric methods for species identification and age estimation in leopards (Panthera pardus fusca) using canine and claw, the major trade articles.

View Article and Find Full Text PDF

The hepatic clock synergizes with HIF-1α to regulate nucleotide availability during liver damage repair.

Nat Metab

January 2025

State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.

Nucleotide availability is crucial for DNA replication and repair; however, the coordinating mechanisms in vivo remain unclear. Here, we show that the circadian clock in the liver controls the activity of the pentose phosphate pathway (PPP) to support de novo nucleotide biosynthesis for DNA synthesis demands. We demonstrate that disrupting the hepatic clock by genetic manipulation or mistimed feeding impairs PPP activity in male mice, leading to nucleotide imbalance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!