High resolution/accurate mass hybrid mass spectrometers have considerably advanced shotgun proteomics and the recent introduction of fast sequencing capabilities has expanded its use for targeted approaches. More specifically, the quadrupole-orbitrap instrument has a unique configuration and its new features enable a wide range of experiments. An overview of the analytical capabilities of this instrument is presented, with a focus on its application to quantitative analyses. The high resolution, the trapping capability and the versatility of the instrument have allowed quantitative proteomic workflows to be redefined and new data acquisition schemes to be developed. The initial proteomic applications have shown an improvement of the analytical performance. However, as quantification relies on ion trapping, instead of ion beam, further refinement of the technique can be expected.

Download full-text PDF

Source
http://dx.doi.org/10.4155/bio.14.115DOI Listing

Publication Analysis

Top Keywords

high resolution
8
quantitative proteomics
4
proteomics high
4
resolution accurate
4
mass
4
accurate mass
4
mass capabilities
4
capabilities quadrupole-orbitrap
4
quadrupole-orbitrap mass
4
mass spectrometer
4

Similar Publications

The present study investigated the neuromodulatory substrates of salience processing and its impact on memory encoding and behaviour, with a specific focus on two distinct types of salience: reward and contextual unexpectedness. 46 Participants performed a novel task paradigm modulating these two aspects independently and allowing for investigating their distinct and interactive effects on memory encoding while undergoing high-resolution fMRI. By using advanced image processing techniques tailored to examine midbrain and brainstem nuclei with high precision, our study additionally aimed to elucidate differential activation patterns in subcortical nuclei in response to reward-associated and contextually unexpected stimuli, including distinct pathways involving in particular dopaminergic modulation.

View Article and Find Full Text PDF

Exploring esophagogastric junction morphology and contractile integral: implications for refractory gastroesophageal reflux disease pathophysiology.

Scand J Gastroenterol

January 2025

Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Xiamen Branch, Xiamen, China.

Background: Evaluate the clinical significance of esophagogastric junction (EGJ) morphology and esophagogastric junction contractile integral (EGJ-CI) in refractory gastroesophageal reflux disease (RGERD) patients.

Methods: From June 2021 to June 2023, 144 RGERD patients underwent comprehensive evaluation, recording symptom scores, demographic data. GERD classification (NERD or RE, A-D) was based on endoscopic findings.

View Article and Find Full Text PDF

Background: The rapid growth of aesthetic medicine has led to an increased demand for non-surgical cosmetic procedures in the frontal region of the face. However, alongside this rise in popularity, there is a growing awareness of the potential complications associated with these procedures especially connected with fillers. The intricate vascular anatomy of the forehead, specifically the supratrochlear (STA) and supraorbital (SOA) arteries, poses significant risks if not thoroughly understood.

View Article and Find Full Text PDF

STMGraph: spatial-context-aware of transcriptomes via a dual-remasked dynamic graph attention model.

Brief Bioinform

November 2024

Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.

Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.

View Article and Find Full Text PDF

A tactile perception method with flexible grating structural color.

Natl Sci Rev

January 2025

Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China.

Affordable high-resolution cameras and state-of-the-art computer vision techniques have led to the emergence of various vision-based tactile sensors. However, current vision-based tactile sensors mainly depend on geometric optics or marker tracking for tactile assessments, resulting in limited performance. To solve this dilemma, we introduce optical interference patterns as the visual representation of tactile information for flexible tactile sensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!