Tetrahydropapaveroline (THP), a benzylisoquinoline alkaloid (BIA) found in diverse pharmaceutical compounds, is used as a starting material for the production of BIA. THP also has various neurobiological properties but is difficult to synthesize. Therefore, a simple method for THP production is desired. Recent studies have shown that microbes, especially bacteria, can serve as platforms for synthesizing these complex compounds; however, because bacteria lack organelles, the designed synthetic pathway cannot be compartmentalized. Thus, the metabolic flow is frequently inhibited or disrupted by undesirable reactions. Indeed, in the first attempt to synthesize THP using a single strain of engineered Escherichia coli, the yield was quite low (<5 μM), mainly because of the oxidation of THP by tyrosinase, an essential enzyme in our production system. To circumvent these problems, we constructed a stepwise (R,S)-THP production system, in which the dopamine-producing step and the subsequent THP-producing step were separated. The yield of (R,S)-THP reached 1.0 mM (287 mg/L), the highest yielding BIA production method using a microbe reported to date. Furthermore, we demonstrated that (R,S)-THP produced by stepwise fermentation is useful for the production of reticuline, an important BIAs intermediate. Based on these observations, applying the stepwise fermentation method is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204043PMC
http://dx.doi.org/10.1038/srep06695DOI Listing

Publication Analysis

Top Keywords

engineered escherichia
8
escherichia coli
8
rs-tetrahydropapaveroline production
4
production stepwise
4
stepwise fermentation
4
fermentation engineered
4
coli tetrahydropapaveroline
4
thp
4
tetrahydropapaveroline thp
4
thp benzylisoquinoline
4

Similar Publications

A cross-species inducible system for enhanced protein expression and multiplexed metabolic pathway fine-tuning in bacteria.

Nucleic Acids Res

January 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China.

Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system.

View Article and Find Full Text PDF

Engineered Phage Enables Efficient Control of Gene Expression upon Infection of the Host Cell.

Int J Mol Sci

December 2024

CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Recently, we developed a spatial phage-assisted continuous evolution (SPACE) system. This system utilizes chemotaxis coupled with the growth of motile bacteria during their spatial range expansion in soft agar to provide fresh host cells for iterative phage infection and selection pressure for preserving evolved genes of interest carried by phage mutants. Controllable mutagenesis activated only in a subpopulation of the migrating cells is essential in this system to efficiently generate mutated progeny phages from which desired individuals are selected during the directed evolution process.

View Article and Find Full Text PDF

Hematoxylin (HT) is a natural staining dye used in histopathology, often combined with Eosin for H&E staining. A poly(hematoxylin-co-l-lysine) (p(HT-co-l)) nanonetwork was synthesized through a one-step Mannich condensation reaction using formaldehyde as a linking agent. The resulting p(HT-co-l) nanogels had an average size of about 200 nm and exhibited a smooth surface and desirable functional groups such as -OH, -NH, and -COOH, as recognized by FT-IR analysis.

View Article and Find Full Text PDF

Can α-Mangostin and Photodynamic Therapy Support Ciprofloxacin in the Inactivation of Uropathogenic and Strains?

Int J Mol Sci

December 2024

Department of Biology and Medical Parasitology, Faculty of Medicine, Wrocław Medical University, Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland.

Multidrug-resistant bacteria represent a significant challenge in the treatment of bacterial infections, often leading to therapeutic failures. This issue underlines the need to develop strategies that improve the efficacy of conventional antibiotic therapies. In this study, we aimed to assess whether a plant-derived compound, α-mangostin, and photodynamic therapy (PDT) could enhance the antibacterial activity of ciprofloxacin against uropathogenic strains of and .

View Article and Find Full Text PDF

Catheter-associated urinary tract infection (CAUTI) induced by rapid bacterial colonization and biofilm formation on urinary catheters is a key issue that urgently needs to be addressed. To prevent CAUTI, many contact-killing, non-leaching coatings have been developed for the surfaces of silicone catheters. However, due to the chemical inertness of the silicone substrate, most current coatings lack adhesion and are unstable under external forces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!