Objective: To detect hot spot mutation of RYR1 gene in 15 cases of congenital myopathy with different subtypes, and to discuss the value of RYR1 gene hot spot mutation detection in the diagnosis of the disease.

Methods: Clinical data were collected in all the patients, including clinical manifestations and signs, serum creatine kinase, electromyography. Fourteen of the patients accepted the muscle biopsy. Hot spot mutation in the C-terminal of RYR1 gene (extron 96-106) had been detected in all the 15 patients.

Results: All the patients presented with motor development delay, and they could walk at the age of 1 to 3.5 years,but were always easy to fall and could not run or jump. There were no progressive deteriorations. Physical examination showed different degrees of muscle weakness and hypotonia.High arched palates were noted in 3 patients. The serum levels of creatine kinase were mildly elevated in 3 cases, and normal in 12 cases. Electromyography showed "myogenic" features in 11 patients, being normal in the other 4 patients. Muscle biopsy pathologic diagnosis was the central core disease in 3 patients, the central nuclei in 2 patients, the congenital fiber type disproportion in 2 patients, the nameline myopathy in 3 patient, the multiminicore disease in 1 patient, and nonspecific minimal changes in the other 3 patients; one patient was diagnosed with central core disease according to positive family history and gene mutation. In the family case (Patient 2) of central core disease, the c.14678G>A (p.Arg4893Gln) mutation in 102 extron of RYR1 was identified in three members of the family, which had been reported to be a pathogenic mutation. The c.14596A>G(p.Lys4866Gln) mutation in 101 extron was found in one patient with central core disease(Patient 1), and the c.14719G>A(p.Gly4907Ser) mutation in 102 extron was found in another case of the central core disease(Patient 3).The same novel mutation was verified in one of the patients' (Patient 3) asymptomatic father.

Conclusion: Congenital myopathies in the different subtype have the similar clinical manifestations, signs, enzyme detection and electromyography changes. Muscle biopsy plays an important role in the selection of genes to be detected. Hot spot mutation in C-terminal of the RYR1 gene can only be identified in patients with central core disease, so we suggest this hot spot gene mutation screening apply to the suspicious patient with central core disease only.

Download full-text PDF

Source

Publication Analysis

Top Keywords

central core
28
spot mutation
20
ryr1 gene
20
hot spot
20
core disease
20
mutation
12
muscle biopsy
12
patient central
12
patients
11
mutation screening
8

Similar Publications

Neuroimmunometabolism describes how neuroimmune cells, such as microglia, adapt their intracellular metabolic pathways to alter their immune functions in the CNS. Emerging evidence indicates that neurons also orchestrate the microglia mediated immune response through neuro-immune crosstalk perhaps through metabolic signalling. However, little is known about how the brain's metabolic microenvironment and microglial intracellular metabolism orchestrate the neuroimmune response in healthy and diseased brains.

View Article and Find Full Text PDF

A modular approach was developed for the first catalytic asymmetric total syntheses of naturally occurring C30 terpene quinone methides and their non-natural stereoisomers, which feature the presence of an unprecedented spiro[4.4]nonane-containing 6-6-6-5-5-3 hexacyclic skeleton. Resting on a chiral phosphinamide-catalyzed enantioselective reduction of 2,2-disubstituted cyclohexane-1,3-dione, a concise route for the synthesis of enantioenriched 6-6 bicyclic fragment was developed.

View Article and Find Full Text PDF

Background: Recent advances in automatic face recognition have increased the risk that de-identified research imaging data could be re-identified from face imagery in brain scans.

Method: An ADNI committee of independent imaging experts evaluated 11 published techniques for face-deidentification ("de-facing") and selected four algorithms (FSL-UK Biobank, HCP/XNAT, mri_reface, and BIC) for formal testing using 183 longitudinal scans of 61 racially and ethnically diverse ADNI participants, evaluated by their facial feature removal on 3D rendered surfaces (confirming sufficient privacy protection) and by comparing measurements from ADNI routine image analyses on unmodified vs. de-faced images (confirming negligible side effects on analyses).

View Article and Find Full Text PDF

Background: The identification of novel blood-based biomarkers of small vessel disease of the brain (SVD) may improve pathophysiologic understanding and inform the development of new therapeutic strategies for prevention. We evaluated plasma proteomic associations of white matter fractional anisotropy (WMFA), white matter hyperintensity (WMH) volume, enlarged perivascular space (ePVS) volume, and the presence of microbleeds (MB) on brain magnetic resonance imaging (MRI) in the population-based Multi-Ethnic Study of Atherosclerosis (MESA).

Methods: Eligible MESA participants had 2941 plasma proteins measured from stored blood samples (collected in 2016-2018) using the antibody-based Olink proteomics platform, and completed brain MRI scans in 2018-2019.

View Article and Find Full Text PDF

Public Health.

Alzheimers Dement

December 2024

Berman Center for Outcomes and Clinical Research, Hennepin Healthcare Research Institute, Minneapolis, MN, USA.

Background: The higher prevalence and incidence of later life dementia among older Black Americans compared to older White Americans is incompletely understood and understudied. HATS is designed as a companion to the Mayo Clinic Study of Aging (MCSA) with a focus on identification of modifiable cardiovascular contributions to brain health among Black older adults living in urban areas in the upper Midwest.

Method: HATS is enrolling 300 U.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!