Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although investigation into the structure of eukaryotic cell membranes has been an intense focus of cell biology for the past two decades, definitive insights have been limited by the lack of coherent methods for the isolation of specific organelle membranes and the identification of membrane subdomains. Here we describe a method for the isolation of mammalian cell plasma membranes as Giant Plasma Membrane Vesicles (GPMVs) and strategies for imaging membrane lateral structure and quantification of protein partitioning between coexisting domains by fluorescence microscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-1752-5_6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!