Recent efforts to incorporate migration processes into species distribution models (SDMs) are allowing assessments of whether species are likely to be able to track their future climate optimum and the possible causes of failing to do so. Here, we projected the range shift of European beech over the 21st century using a process-based SDM coupled to a phenomenological migration model accounting for population dynamics, according to two climate change scenarios and one land use change scenario. Our model predicts that the climatically suitable habitat for European beech will shift north-eastward and upward mainly because (i) higher temperature and precipitation, at the northern range margins, will increase survival and fruit maturation success, while (ii) lower precipitations and higher winter temperature, at the southern range margins, will increase drought mortality and prevent bud dormancy breaking. Beech colonization rate of newly climatically suitable habitats in 2100 is projected to be very low (1-2% of the newly suitable habitats colonised). Unexpectedly, the projected realized contraction rate was higher than the projected potential contraction rate. As a result, the realized distribution of beech is projected to strongly contract by 2100 (by 36-61%) mainly due to a substantial increase in climate variability after 2050, which generates local extinctions, even at the core of the distribution, the frequency of which prevents beech recolonization during more favourable years. Although European beech will be able to persist in some parts of the trailing edge of its distribution, the combined effects of climate and land use changes, limited migration ability, and a slow life-history are likely to increase its threat status in the near future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.12771 | DOI Listing |
Sci Rep
January 2025
Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46 Str, Krakow, 31-425, Poland.
Tree species through aboveground biomass and roots are a key factors influencing the quality and quantity of soil organic matter. Our study aimed to determine the stability of soil organic matter in Luvisols under the influence of five different tree species. The study areas were located 25 km north of Krakow, in southern Poland.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Forest Biodiversity, Faculty of Forestry, University of Agriculture, al. 29 Listopada 46, 31-425 Kraków, Poland. Electronic address:
Tree-related Microhabitats (TreMs) are essential for sustaining forest biodiversity. Although TreMs represent ephemeral resources that are spread across the landscape, their spatial distribution within temperate forests remains poorly understood. To address this knowledge gap, we conducted a study on 90 sample plots (0.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
National Research Council-National Institute of Optics, Largo E. Fermi, 6, 50125 Florence, Italy.
Understanding the deterioration processes in wooden artefacts is essential for accurately assessing their conservation status and developing effective preservation strategies. Advanced imaging techniques are currently being explored to study the impact of chemical changes on the structural and mechanical properties of wood. Nonlinear optical modalities, including second harmonic generation (SHG) and two-photon excited fluorescence (TPEF), combined with fluorescence lifetime imaging microscopy (FLIM), offer a promising non-destructive diagnostic method for evaluating lignocellulose-based materials.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy.
This study provides the first comprehensive evaluation of the bioactive potential of acorn flour extracts (, Fagaceae) prepared at different temperatures (20, 60, 80 and 100 °C), focusing on polyphenolic content, antioxidant properties and enzyme inhibitory activities. Through HPLC-ESI-MS/MS analysis, 36 bioactive compounds were identified, with the extract at 60 °C showing the highest concentrations of key polyphenols, notably gallic acid (210,008.9 mg·kg) and ellagic acid (45,469.
View Article and Find Full Text PDFFood Sci Technol Int
January 2025
Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj Napoca, Cluj Napoca, Romania.
Plants available in the spontaneous flora are recently studied as ingredients for food formulation in response to the demands for sustainable plant-based foods. The aim of this study was to obtain a new assortment of spreadable creams, free of palm oil, with good textural, rheological and colour attributes, high antioxidant activity and low cytotoxicity, from . (European beech) seeds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!