A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of Eye Drops Containing Disulfiram and Low-Substituted Methylcellulose in Reducing Intraocular Pressure in Rabbit Models. | LitMetric

AI Article Synopsis

  • Researchers developed anti-glaucoma eye drops using disulfiram (DSF) and methylcellulose (MC) to test their effectiveness in reducing intraocular pressure (IOP) in rabbits.
  • The study involved inducing elevated IOP in rabbits and measuring the effects of the eye drops on IOP and nitric oxide (NO) levels in the aqueous humor.
  • Results showed that DSF eye drops, with or without MC, effectively lowered IOP, and the addition of MC enhanced the duration of the drug's effects, suggesting a potential for improved glaucoma treatment.

Article Abstract

Purpose: We attempted to develop anti-glaucoma eye drops using 0.5% disulfiram (DSF), 5% 2-hydroxypropyl-β-cyclodextrin, 0.1% hydroxypropylmethylcellulose, and 2% methylcellulose (MC) (DSF eye drops with MC), and tested the ability of a DSF eye drops with MC to reduce intraocular pressure (IOP) in rabbit models.

Methods: Elevated IOP was induced by the rapid infusion of 5% glucose solution (15 ml/kg of body weight) through the marginal ear vein or by keeping rabbits in the dark for 5 h. IOP and the nitric oxide (NO) level in the aqueous humor were measured with an electronic tonometer and by a microdialysis method, respectively. ΔIOP and ΔNO values were analyzed as the differences in IOP and NO in rabbits instilled with saline or eye drops, respectively.

Results: Increased IOP in rabbit models was reduced by the instillation of DSF eye drops with or without MC, and a close relationship was observed between IOP and NO levels in rabbit receiving a rapid infusion of isotonic glucose. We present kinetic parameters [secondary AUC (prolonged drug effect) and secondary MRT (prolonged effective time)] analyzed as the area under the curve (AUC) of ΔIOP or ΔNO versus time using rabbits instilled with eye drops 10, 50, or 90 min prior to the infusion of the isotonic glucose solution. The elevations in IOP and NO level were reduced by the instillation of DSF eye drops with or without MC; the addition of MC increased the secondary AUC and MRT of DSF eye drops.

Conclusions: The present study demonstrates that 0.5% DSF eye drops suppress increased IOP in rabbit models, probably by inhibiting the elevation in NO levels. In addition, we propose a kinetic analysis method to predict drug effects and effective time. These findings suggest that a low-substituted MC-based drug delivery system promotes drug effectiveness and effective time.

Download full-text PDF

Source
http://dx.doi.org/10.3109/02713683.2014.971187DOI Listing

Publication Analysis

Top Keywords

eye drops
36
dsf eye
24
rabbit models
12
iop rabbit
12
eye
10
intraocular pressure
8
drops
8
iop
8
rapid infusion
8
glucose solution
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!