Objective: This study aimed to compare the influence of alveolar ridge cortical bone and sinus floor cortical bone in sinus areabi-cortical dental implantation by means of 3D finite element analysis.

Materials And Methods: Three-dimensional finite element (FE) models in a posterior maxillary region with sinus membrane and the same height of alveolar ridge of 10 mm were generated according to the anatomical data of the sinus area. They were either with fixed thickness of crestal cortical bone and variable thickness of sinus floor cortical bone or vice versa. Ten models were assumed to be under immediate loading or conventional loading. The standard implant model based on the Nobel Biocare implant system was created via computer-aided design software. All materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied.

Results: Von Mises stress mainly concentrated on the surface of crestal cortical bone around the implant neck. For all the models, both the axial and buccolingual resonance frequencies of conventional loading were higher than those of immediate loading; however, the difference is less than 5%.

Conclusion: The results showed that bi-cortical implant in sinus area increased the stability of the implant, especially for immediately loading implantation. The thickness of both crestal cortical bone and sinus floor cortical bone influenced implant micromotion and stress distribution; however, crestal cortical bone may be more important than sinus floor cortical bone.

Download full-text PDF

Source
http://dx.doi.org/10.3109/00016357.2014.967718DOI Listing

Publication Analysis

Top Keywords

cortical bone
44
crestal cortical
20
bone sinus
20
sinus floor
20
floor cortical
20
finite element
12
cortical
11
bone
11
sinus
9
dental implantation
8

Similar Publications

Radiomorphometric Parameters in Mandibular Panoramic Radiographs of Hypothyroid Patients: A Cross-Sectional Study.

Clin Cosmet Investig Dent

January 2025

Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

Purpose: Thyroid hormones have a catabolic effect on bone mineral homeostasis. Hypothyroid patients have shown changes in bone mineral density with increased risk for osteoporosis and bone fractures. Radiomorphometric parameters on panoramic images are good indicators of bone mineral density.

View Article and Find Full Text PDF

Cherubism is a rare autosomal dominant skeletal dysplasia, affecting the maxilla and/or mandible. The condition typically has childhood onset, followed by progression until puberty, with subsequent regression. Cherubism lesions share histological features with giant cell tumor of bone, where high-dose monthly denosumab is an effective medical treatment.

View Article and Find Full Text PDF

This study numerically investigates the impact of different loading modes on the biomechanical response of an osseointegrated dental implant. While finite element modeling is commonly employed to investigate the mechanical behavior of dental implants, several models lack physiological accuracy in their loading conditions, omitting occlusal contact points that influence stress distribution in periimplant bone. Using 3D finite element modeling and analysis, stress distributions at the bone-implant interface are evaluated under both physiological loading, incorporating natural occlusal contact points, and non-physiological loading conditions, with a focus on load transmission mechanisms and the potential risk of bone overloading.

View Article and Find Full Text PDF

Background: The mechanical properties of framework materials significantly influence stress distribution and the long-term success of implant-supported prostheses. Although titanium, cobalt-chromium, zirconia, and polyether ether ketone (PEEK) are widely used, their biomechanical performance under dynamic loading conditions remains insufficiently investigated. This study aimed to evaluate the biomechanical behavior of four framework materials with different Young's modulus using dynamic finite element stress analysis.

View Article and Find Full Text PDF

Enhanced porous titanium biofunctionalization based on novel silver nanoparticles and nanohydroxyapatite chitosan coatings.

Int J Biol Macromol

January 2025

Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain. Electronic address:

Titanium is widely used for implants however it presents limitations such as infection risk, stress shielding phenomenon, and poor osseointegration. To address these issues, a novel approach was proposed that involves fabricating porous titanium substrates, to reduce implant stiffness, minimizing stress shielding and bone resorption, and applying polymeric coatings to improve bioactivity. Composite coating prepared from chitosan, silver nanoparticles, and nanohydroxyapatite was optimized to enhance antibacterial properties and promote osseointegration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!