Autophagy facilitates antibody-enhanced dengue virus infection in human pre-basophil/mast cells.

PLoS One

Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.

Published: December 2015

Background: Dengue virus (DENV) infection can cause severe hemorrhagic disease in humans. Although the pathogenic mechanisms underlying severe DENV disease remain unclear, one of the possible contributing factors is antibody-dependent enhancement (ADE) which occurs when sub-neutralizing antibodies derived from a previous DENV infection enhance viral infection through interaction between virus-antibody complexes and FcR-bearing cells, such as macrophages and basophil/mast cells. Although recent reports showed that DENV induces autophagy, the relationship between antibody-enhanced DENV infection and autophagy is not clear.

Methodology/principal Findings: We showed that sub-neutralizing antibodies derived from dengue patient sera enhanced DENV infection and autophagy in the KU812 pre-basophil-like cell line as well as the HMC-1 immature mast cell line. Antibody-enhanced DENV infection of KU812 cells increased the number of autophagosome vesicles, LC3 punctation, LC3-II accumulation, and p62 degradation over that seen in cells infected with DENV alone. The percentages of DENV envelope (E) protein-positive cells and LC3 puncta following antibody-enhanced DENV infection of KU812 cells were reduced by the autophagy inhibitor 3-MA. Antibody-enhanced DENV infection of HMC-1 cells showed co-localization of DENV E protein and dsRNA with autophagosomes, which was inhibited by 3-MA treatment. Furthermore, DENV infection and replication were reduced when KU812 cells were transfected with the autophagy-inhibiting Atg4BC74A mutant.

Conclusions/significance: Our results demonstrate a significant induction of autophagy in antibody-enhanced DENV infection of pre-basophil-like KU812 and immature mast cell-like HMC-1 cells. Also, autophagy plays an important role in DENV infection and replication in these cells. Given the importance of ADE and FcR-bearing cells such as monocytes, macrophages and basophil/mast cells in dengue disease, the results provide insights into dengue pathogenesis and therapeutic means of control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199741PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110655PLOS

Publication Analysis

Top Keywords

denv infection
40
antibody-enhanced denv
20
denv
15
cells
13
infection
12
ku812 cells
12
dengue virus
8
sub-neutralizing antibodies
8
antibodies derived
8
fcr-bearing cells
8

Similar Publications

Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.

View Article and Find Full Text PDF

Aims: The screening and diagnosis of dengue virus infection play a crucial role in controlling the epidemic of dengue fever, highlighting the urgent need for a highly sensitive, simple, and rapid laboratory testing method. This study aims to assess the clinical performance of MAGLUMI Denv NS1 in detecting dengue virus NS1 antigen.

Methods: A retrospective study was conducted to assess the sensitivity and specificity of MAGLUMI Denv NS1 using residual samples.

View Article and Find Full Text PDF

Functional Verification of Differentially Expressed Genes Following DENV2 Infection in .

Viruses

January 2025

State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China.

The dengue virus (DENV) is primarily transmitted by . Investigating genes associated with mosquito susceptibility to DENV2 offers a theoretical foundation for targeted interventions to regulate or block viral replication and transmission within mosquitoes. Based on the transcriptomic analyses of the midgut and salivary glands from infected with DENV2, alongside analyses of Aag2 cell infections, 24 genes potentially related to the regulation of infection with DENV2 were selected.

View Article and Find Full Text PDF

Dengue fever, caused by the dengue virus (DENV), poses a significant global health challenge, particularly in tropical and subtropical regions. Recent increases in indigenous DENV cases in Europe are concerning, reflecting rising incidence linked to climate change and the spread of mosquitoes. These vectors thrive under environmental conditions like temperature and humidity, which are increasingly influenced by climate change.

View Article and Find Full Text PDF

The medicinal potential of plant extracts, especially their antimicrobial, antioxidant, antiviral and cytotoxic properties, has gained significant attention in recent years. This study examined the in vitro bioactivities of several selected Greek medicinal plants, like L., L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!