A novel lithium-oxygen battery exploiting PYR14TFSI-LiTFSI as ionic liquid-based electrolyte medium is reported. The Li/PYR14TFSI-LiTFSI/O2 battery was fully characterized by electrochemical impedance spectroscopy, capacity-limited cycling, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. The results of this extensive study demonstrate that this new Li/O2 cell is characterized by a stable electrode-electrolyte interface and a highly reversible charge-discharge cycling behavior. Most remarkably, the charge process (oxygen oxidation reaction) is characterized by a very low overvoltage, enhancing the energy efficiency to 82%, thus, addressing one of the most critical issues preventing the practical application of lithium-oxygen batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl5031985DOI Listing

Publication Analysis

Top Keywords

battery exploiting
8
ionic liquid-based
8
liquid-based electrolyte
8
electron microscopy
8
advanced lithium-air
4
lithium-air battery
4
exploiting ionic
4
electrolyte novel
4
novel lithium-oxygen
4
lithium-oxygen battery
4

Similar Publications

Lithium-sulfur (Li-S) batteries hold significant promise due to high energy density, cost-effectiveness, and ecological sustainability, but their practical applications are constrained by suboptimal electrochemical performance and the detrimental shuttle effect. Herein, a porous, sandwich-structured composite was developed to function as a freestanding cathode designed for Li-S batteries without aluminum foil. Porous carbon nanofibers (PCNF) were employed as the conductive matrix for sulfur, with tungsten carbide (WC) being incorporated to furnish abundant active sites for polysulfide adsorption.

View Article and Find Full Text PDF

In the human body, bioelectric cues are crucial for tissue stimulation and regeneration. Electrical stimulation (ES) significantly enhances the regeneration of nerves, bones, cardiovascular tissues, and wounds. However, the use of conventional devices with stimulating metal electrodes is invasive and requires external batteries.

View Article and Find Full Text PDF

Room-Temperature CsPbI-Quantum-Dot Reinforced Solid-State Li-Polymer Battery.

Small

January 2025

Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

A novel polymer electrolyte based on CsPbI quantum dots (QDs) reinforced polyacrylonitrile (PAN), named as PIL, is exploited to address the low room-temperature (RT) ion conductivity and poor interfacial compatibility of polymer solid-state electrolytes. After optimizing the content of CsPbI QDs, RT ion conductivity of PIL largely increased from 0.077 to 0.

View Article and Find Full Text PDF

Analysis of Autonomous Penetration Testing Through Reinforcement Learning and Recommender Systems.

Sensors (Basel)

January 2025

Group of Analysis, Security and Systems (GASS), Department of Software Engineering and Artificial Intelligence (DISIA), Faculty of Computer Science and Engineering, Office 431, Universidad Complutense de Madrid (UCM), Calle Profesor José García Santesmases, 9, Ciudad Universitaria, 28040 Madrid, Spain.

Conducting penetration testing (pentesting) in cybersecurity is a crucial turning point for identifying vulnerabilities within the framework of Information Technology (IT), where real malicious offensive behavior is simulated to identify potential weaknesses and strengthen preventive controls. Given the complexity of the tests, time constraints, and the specialized level of expertise required for pentesting, analysis and exploitation tools are commonly used. Although useful, these tools often introduce uncertainty in findings, resulting in high rates of false positives.

View Article and Find Full Text PDF

Atomically dispersed rare earth dysprosium-nitrogen-carbon for boosting oxygen reduction reaction.

J Colloid Interface Sci

January 2025

Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China. Electronic address:

Transition metal-nitrogen-carbon (MNC) based on 3d metal atoms as promising non-precious metal catalysts have been extensively exploited for oxygen reduction reaction (ORR), but MNC with 4f rare earth metals have been largely ignored, most likely due to their large atomic radii that are difficult to coordinate with N dopants using conventional precursors. Herein, atomically dispersed dysprosium-nitrogen-carbon (DyNC) nanosheets were developed via the pyrolysis of anitrogen-containing chelate compound of 2, 4, 6-Tri (2-pyridyl) 1, 3, 5-triazine (TPTZ) ligand with Dy under the assistance of molten NaCl. The as-synthesized DyNC features specific moieties of single Dy atom coordinated by N and O as active sites for ORR, displaying excellent performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!