Gene expression differences among three Neurospora species reveal genes required for sexual reproduction in Neurospora crassa.

PLoS One

Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America; Department of Biostatistics, Yale University, New Haven, Connecticut, United States of America; Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America; Program in Microbiology, Yale University, New Haven, Connecticut, United States of America.

Published: July 2015

Many fungi form complex three-dimensional fruiting bodies, within which the meiotic machinery for sexual spore production has been considered to be largely conserved over evolutionary time. Indeed, much of what we know about meiosis in plant and animal taxa has been deeply informed by studies of meiosis in Saccharomyces and Neurospora. Nevertheless, the genetic basis of fruiting body development and its regulation in relation to meiosis in fungi is barely known, even within the best studied multicellular fungal model Neurospora crassa. We characterized morphological development and genome-wide transcriptomics in the closely related species Neurospora crassa, Neurospora tetrasperma, and Neurospora discreta, across eight stages of sexual development. Despite diverse life histories within the genus, all three species produce vase-shaped perithecia. Transcriptome sequencing provided gene expression levels of orthologous genes among all three species. Expression of key meiosis genes and sporulation genes corresponded to known phenotypic and developmental differences among these Neurospora species during sexual development. We assembled a list of genes putatively relevant to the recent evolution of fruiting body development by sorting genes whose relative expression across developmental stages increased more in N. crassa relative to the other species. Then, in N. crassa, we characterized the phenotypes of fruiting bodies arising from crosses of homozygous knockout strains of the top genes. Eight N. crassa genes were found to be critical for the successful formation of perithecia. The absence of these genes in these crosses resulted in either no perithecium formation or in arrested development at an early stage. Our results provide insight into the genetic basis of Neurospora sexual reproduction, which is also of great importance with regard to other multicellular ascomycetes, including perithecium-forming pathogens, such as Claviceps purpurea, Ophiostoma ulmi, and Glomerella graminicola.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203796PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110398PLOS

Publication Analysis

Top Keywords

neurospora crassa
12
neurospora
9
genes
9
gene expression
8
neurospora species
8
sexual reproduction
8
fruiting bodies
8
genetic basis
8
fruiting body
8
body development
8

Similar Publications

Background: Organization of the eukaryotic genome is essential for proper function, including gene expression. In metazoans, chromatin loops and Topologically Associated Domains (TADs) organize genes into transcription factories, while chromosomes occupy nuclear territories in which silent heterochromatin is compartmentalized at the nuclear periphery and active euchromatin localizes to the nucleus center. A similar hierarchical organization occurs in the fungus Neurospora crassa where its seven chromosomes form a Rabl conformation typified by heterochromatic centromeres and telomeres independently clustering at the nuclear membrane, while interspersed heterochromatic loci aggregate across Megabases of linear genomic distance to loop chromatin in TAD-like structures.

View Article and Find Full Text PDF

Antifungal resistance, particularly the rise of multidrug-resistance strains, poses a significant public health threat. In this study, the study identifies a novel multidrug-resistance gene, msp-8, encoding a helicase, through experimental evolution with Neurospora crassa as a model. Deletion of msp-8 conferred multidrug resistance in N.

View Article and Find Full Text PDF

The widespread use of azole antifungals in agriculture and clinical settings has led to serious drug resistance. Overexpression of the azole drug target 14α-demethylase ERG11 (CYP51) is the most common fungal resistance mechanism. However, the presence of additional regulatory proteins in the transcriptional response of is not yet fully elucidated.

View Article and Find Full Text PDF

Hyphal elongation is the vegetative growth of filamentous fungi, and many species continuously elongate their hyphal tips over long periods. The details of the mechanisms for maintaining continuous growth are not yet clear. A novel short lifespan mutant of N.

View Article and Find Full Text PDF

Filamentous fungi are important producers of enzymes and secondary metabolites. The industrial thermophilic species, is closely related to the model fungus, . A critical aspect of the filamentous fungal life cycle is the production of asexual spores (conidia), which are regulated by various stimuli, including nutrient availability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!