(19)F magnetic resonance imaging (MRI): from design of materials to clinical applications.

Chem Rev

Laboratory of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta" and ‡Fondazione Centro Europeo Nanomedicina, Politecnico di Milano , Milan 20131, Italy.

Published: January 2015

Download full-text PDF

Source
http://dx.doi.org/10.1021/cr500286dDOI Listing

Publication Analysis

Top Keywords

19f magnetic
4
magnetic resonance
4
resonance imaging
4
imaging mri
4
mri design
4
design materials
4
materials clinical
4
clinical applications
4
19f
1
resonance
1

Similar Publications

The Search for the Optimal Methodology for Predicting Fluorinated Cathinone Drugs NMR Chemical Shifts.

Molecules

December 2024

Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, 60, Będzińska, 41-200 Sosnowiec, Poland.

Cathinone and its synthetic derivatives belong to organic compounds with narcotic properties. Their structural diversity and massive illegal use create the need to develop new analytical methods for their identification in different matrices. NMR spectroscopy is one of the most versatile methods for identifying the structure of organic substances.

View Article and Find Full Text PDF

Innovative Perspectives on Metal Free Contrast Agents for MRI: Enhancing Imaging Efficacy, and AI-Driven Future Diagnostics.

Acta Biomater

January 2025

Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China. Electronic address:

The U.S. Food and Drug Administration (FDA) has issued a boxed warning and mandated additional safety measures for all gadolinium-based contrast agents (GBCAs) used in clinical magnetic resonance imaging (MRI) due to their prolonged retention in the body and associated adverse health effects.

View Article and Find Full Text PDF

H-F cross-polarization magic angle spinning dynamic nuclear polarization NMR investigation of advanced pharmaceutical formulations.

J Magn Reson

December 2024

Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden.

A new 3.2 mm H-F-X magic angle spinning dynamic nuclear polarization NMR (MAS DNP-NMR) probe was developed with a unique coil design with separate radiofrequency channels for H excitation and C or F detection to enable acquisition of H-F cross-polarization (CP) MAS experiments, direct-detected F spectra with proton decoupling, and acquisition on C with simultaneous double decoupling on the H and 19F channels as well as H-F-C double-CP experiments under low temperature MAS DNP conditions. We use these sequences to study AZD2811, which is an active pharmaceutical ingredient (API), in its pure dry state as well as in its corresponding drug delivery formulation consisting of drug-loaded polymeric nanoparticles (PNPs).

View Article and Find Full Text PDF

Fluorination of Aza-BODIPY for Cancer Cell Plasma Membrane-Targeted Imaging and Therapy.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.

Photodynamic therapy (PDT) holds great potential in cancer treatment, leveraging photosensitizers (PSs) to deliver targeted therapy. Fluorination can optimize the physicochemical and biological properties of PSs for better PDT performance. Here, we report some high-performance multifunctional PSs specifically designed for cancer PDT by fluorinating aza-BODIPY with perfluoro--butoxymethyl (PFBM) groups.

View Article and Find Full Text PDF

Cardiac fibroblasts are activated following myocardial infarction (MI) and cardiac fibrosis is a major driver of the growing burden of heart failure. A non-invasive targeting method for activated cardiac fibroblasts would be advantageous because of their importance for imaging and therapy. Targeting was achieved by linking a 7-amino acid peptide (EP9) to a perfluorocarbon-containing nanoemulsion (PFC-NE) for visualization by F-combined with H-MRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!