The feasibility study of non-invasive fetal trisomy 18 and 21 detection with semiconductor sequencing platform.

PLoS One

TheragenEtex Bio Institute, Suwon, Republic of Korea; Genome Care, Seoul, South Korea; Personal Genomics Institute, Genome Research Foundation, Suwon, Republic of Korea; BioMedical Engineering, UNIST, Ulsan, Republic of Korea.

Published: July 2015

Objective: Recent non-invasive prenatal testing (NIPT) technologies are based on next-generation sequencing (NGS). NGS allows rapid and effective clinical diagnoses to be determined with two common sequencing systems: Illumina and Ion Torrent platforms. The majority of NIPT technology is associated with Illumina platform. We investigated whether fetal trisomy 18 and 21 were sensitively and specifically detectable by semiconductor sequencer: Ion Proton.

Methods: From March 2012 to October 2013, we enrolled 155 pregnant women with fetuses who were diagnosed as high risk of fetal defects at Xiamen Maternal & Child Health Care Hospital (Xiamen, Fujian, China). Adapter-ligated DNA libraries were analyzed by the Ion Proton™ System (Life Technologies, Grand Island, NY, USA) with an average 0.3× sequencing coverage per nucleotide. Average total raw reads per sample was 6.5 million and mean rate of uniquely mapped reads was 59.0%. The results of this study were derived from BWA mapping. Z-score was used for fetal trisomy 18 and 21 detection.

Results: Interactive dot diagrams showed the minimal z-score values to discriminate negative versus positive cases of fetal trisomy 18 and 21. For fetal trisomy 18, the minimal z-score value of 2.459 showed 100% positive predictive and negative predictive values. The minimal z-score of 2.566 was used to classify negative versus positive cases of fetal trisomy 21.

Conclusion: These results provide the evidence that fetal trisomy 18 and 21 detection can be performed with semiconductor sequencer. Our data also suggest that a prospective study should be performed with a larger cohort of clinically diverse obstetrics patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203771PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110240PLOS

Publication Analysis

Top Keywords

fetal trisomy
28
minimal z-score
12
fetal
8
trisomy detection
8
semiconductor sequencer
8
negative versus
8
versus positive
8
positive cases
8
cases fetal
8
trisomy
7

Similar Publications

Down syndrome (DS) or trisomy 21 (T21) is present in a significant number of children and adults around the world and is associated with cognitive and medical challenges. Through research, the T21 Research Society (T21RS), established in 2014, unites a worldwide community dedicated to understanding the impact of T21 on biological systems and improving the quality of life of people with DS across the lifespan. T21RS hosts an international conference every two years to support collaboration, dissemination, and information sharing for this goal.

View Article and Find Full Text PDF

Incidental Detection of Maternal Cancer Following Cell-Free DNA Screening for Fetal Aneuploidies.

Clin Chem

January 2025

Prenatal Genomics and Therapy Section, Center for Precision Health Research, National Human Genome Institute, National Institutes of Health, Bethesda, MD, United States.

Background: Prenatal cell-free DNA (cfDNA) screening is a success story of clinical genomics that has translated to and transformed obstetric care. It is a highly sensitive and specific method of screening for the most common fetal aneuploidies, including trisomies 13, 18, and 21. While primarily designed to detect fetal chromosomal abnormalities, the test also analyzes maternal cfDNA, which can complicate interpretation of results.

View Article and Find Full Text PDF

Best Practice & Research clinical obstetrics & gynaecology.

Best Pract Res Clin Obstet Gynaecol

December 2024

University of California, San Francisco, Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Maternal-Fetal Medicine, 1825 Fourth St, Third Floor, San Francisco, CA, 94158, USA; University of California, San Francisco, Institute of Human Genetics, 1825 Fourth St, Third Floor, San Francisco, CA, 94158, USA. Electronic address:

Screening for fetal genetic disorders is a focus of prenatal care. Cell free DNA (cfDNA) screening for aneuploidies became available in 2011. Initially available only to high-risk individuals, this test is now standard of care in many settings.

View Article and Find Full Text PDF

The advent of non-invasive prenatal testing (NIPT) in the screening of fetal abnormalities has optimized prenatal care and decreased the rate of invasive diagnostic tests. In this retrospective descriptive study, we began with 1874 singleton pregnancies. After exclusion of some cases, the study cohort ended up with 1674 cases.

View Article and Find Full Text PDF

Role of copy number variation analysis in prenatally diagnosed Blake's pouch cyst.

BMC Pregnancy Childbirth

December 2024

Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Maternal and Child Health Care Hospital, Beijing, 100026, China.

Background: Blake's pouch cyst (BPC) is a midline cystic anomaly of the posterior fossa. BPC has been shown to have a risk of aneuploidy prenatally. Copy number variation (CNV) and/or genetic syndromes have been reported in a few prenatal/postnatal cases with BPC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!