Impact of Schistosoma mansoni on malaria transmission in Sub-Saharan Africa.

PLoS Negl Trop Dis

School of Public Health, Yale University, New Haven, Connecticut, United States of America.

Published: October 2014

Background: Sub-Saharan Africa harbors the majority of the global burden of malaria and schistosomiasis infections. The co-endemicity of these two tropical diseases has prompted investigation into the mechanisms of coinfection, particularly the competing immunological responses associated with each disease. Epidemiological studies have shown that infection with Schistosoma mansoni is associated with a greater malaria incidence among school-age children.

Methodology: We developed a co-epidemic model of malaria and S. mansoni transmission dynamics which takes into account key epidemiological interaction between the two diseases in terms of elevated malaria incidence among individuals with S. mansoni high egg output. The model was parameterized for S. mansoni high-risk endemic communities, using epidemiological and clinical data of the interaction between S. mansoni and malaria among children in sub-Saharan Africa. We evaluated the potential impact of the S. mansoni-malaria interaction and mass treatment of schistosomiasis on malaria prevalence in co-endemic communities.

Principal Findings: Our results suggest that in the absence of mass drug administration of praziquantel, the interaction between S. mansoni and malaria may reduce the effectiveness of malaria treatment for curtailing malaria transmission, in S. mansoni high-risk endemic communities. However, when malaria treatment is used in combination with praziquantel, mass praziquantel administration may increase the effectiveness of malaria control intervention strategy for reducing malaria prevalence in malaria- S. mansoni co-endemic communities.

Conclusions/significance: Schistosomiasis treatment and control programmes in regions where S. mansoni and malaria are highly prevalent may have indirect benefits on reducing malaria transmission as a result of disease interactions. In particular, mass praziquantel administration may not only have the direct benefit of reducing schistosomiasis infection, it may also reduce malaria transmission and disease burden.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199517PMC
http://dx.doi.org/10.1371/journal.pntd.0003234DOI Listing

Publication Analysis

Top Keywords

malaria
16
mansoni malaria
16
malaria transmission
16
sub-saharan africa
12
mansoni
10
schistosoma mansoni
8
malaria incidence
8
mansoni high-risk
8
high-risk endemic
8
endemic communities
8

Similar Publications

Background: To develop an effective vaccine against Plasmodium vivax, the most widely dispersed human malaria parasite, it is critical to understand how coinfections with other pathogens could impact malaria-specific immune response. A recent conceptual study proposed that Epstein-Barr virus (EBV), a highly prevalent human herpesvirus that establishes lifelong persistent infection, may influence P. vivax antibody responses.

View Article and Find Full Text PDF

Background: Malaria and HIV are leading causes of death in Africa, including Cameroon. Antiretroviral therapy (ART) is expected to boost immunity and reduce vulnerability to opportunistic infections. Reports on comorbidities including malaria are common in Cameroon.

View Article and Find Full Text PDF

Malaria is a highly lethal infectious disease caused by parasites. These parasites are transmitted to vertebrate hosts when mosquitoes of the genus probe for a blood meal. Sporozoites, the infectious stage of , transit to the liver within hours of injection into the dermis.

View Article and Find Full Text PDF

[Investigation of Molecular Differences in Plasmodium spp. Isolates Obtained from Malaria Patients].

Mikrobiyol Bul

January 2025

Sağlık Bilimleri Üniversitesi, Kayseri Şehir Eğitim ve Araştırma Hastanesi, Parazitoloji Laboratuvarı, Kayseri.

Sıtma, her yıl dünya nüfusunun yarısından fazlası için ciddi bir tehdit oluşturmaya devam etmektedir. Hastalığa neden olan Plasmodium parazitleri, yalnızca insanlarla sınırlı kalmayıp sürüngenlerden kuşlara, memelilerden diğer omurgalılara dek geniş enfeksiyon yelpazesine sahiptir. Plasmodium türleri, çevredeki değişikliklere uyum sağlamalarını sağlayan olağanüstü genetik esnekliğe sahiptir ve bu da onlara sıtma ilaçları gibi tedavi edici maddelere karşı hızla direnç geliştirme ve konakçı özgüllüğünü değiştirme potansiyeli verir.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!