AI Article Synopsis

Article Abstract

Small-molecule inhibitors of glycogen synthase kinase 3β (GSK3β) have demonstrated strong anti-leukemia effects in preclinical studies. Here, we investigated the effect of GSK3β inhibitor 6-Bromoindirubin-3-oxime (BIO) previously shown to inhibit leukemia cell growth in vitro and of animal models on hematopoietic regeneration in recipients of stem cell transplant. BIO administered to immunocompromised mice transplanted with human hematopoietic stem cells inhibited human stem cell engraftment in the bone marrow (BM) and peripheral blood. BIO reduced CD34(+) progenitor cells in the BM, and primitive lymphoid progenitors re-populated host thymus at later stages post-transplant. The development of all T-cell subsets in the thymus was suppressed in BIO-treated mice. Human cell engraftment was gradually restored after discontinuation of BIO treatment; however, T-cell depletion remained until the end of experiment, which correlated with the attenuated thymic function in the host. BIO delayed CD34(+) cell expansion in stroma-supported or cytokine-only cultures. BIO treatment delayed progenitor cell divisions and induced apoptosis in cultures with sub-optimal cytokine support. In addition, BIO inhibited B- and T-cell development in co-cultures with MS5 and OP9-DL1 BM stroma cells, respectively. These data suggest that administration of GKS3β inhibitors may act to delay hematopoietic regeneration in patients who received stem cell transplant.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2014.0230DOI Listing

Publication Analysis

Top Keywords

stem cell
16
hematopoietic regeneration
12
glycogen synthase
8
synthase kinase
8
kinase 3β
8
cell
8
cell transplant
8
cell engraftment
8
bio treatment
8
bio
7

Similar Publications

A Japanese woman with Li-Fraumeni syndrome in her 40s underwent comprehensive genetic profiling accompanied by germline data using the Oncoguide NCC Oncopanel, but no germline pathogenic variants in the tumor suppressor gene TP53 were detected. However, careful examination of additional data in the report suggested the presence of a large TP53 deletion. Custom targeting next-generation sequencing and nanopore sequencing revealed a 3.

View Article and Find Full Text PDF

Revolutionizing acute myeloid leukemia treatment: a systematic review of immune-based therapies.

Discov Oncol

January 2025

Division of Hematology/Oncology, The University of Texas Health Sciences Center at Houston, McGovern Medical School, 6431 Fannin Street, MSB 5.216, Houston, TX, 77030, USA.

The established protocol for the management of acute myeloid leukemia (AML) has traditionally involved the administration of induction chemotherapy, followed by consolidation chemotherapy, and subsequent allogeneic stem cell transplantation for eligible patients. However, the prognosis for individuals with relapsed and refractory AML remains unfavorable. In response to the necessity for more efficacious therapeutic modalities, targeted immunotherapy has emerged as a promising advancement in AML treatment.

View Article and Find Full Text PDF

The causal association between cardiovascular proteins and diabetic nephropathy: a Mendelian randomization study.

Int Urol Nephrol

January 2025

Department of Nephrology, Jiangxi Medical College, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.

Purpose: To clarify the causal association between cardiovascular proteins and diabetic nephropathy (DN) in Europeans.

Methods: The large genome-wide association study data of cardiovascular proteins and DN were used for this two-sample Mendelian randomization (MR) analysis. We took the Inverse variance weighted (IVW) as the primary method.

View Article and Find Full Text PDF

ISCT MSC committee statement on the US FDA approval of allogenic bone-marrow mesenchymal stromal cells.

Cytotherapy

January 2025

Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Division of Hematology, University of Toronto, Toronto, Ontario, Canada. Electronic address:

The December 2024 US Food and Drug Administration (FDA) approval of Mesoblast's Ryoncil (remestemcel-L-rknd)-allogeneic bone marrow mesenchymal stromal cell (MSC(M)) therapy-in pediatric acute steroid-refractory graft-versus-host-disease finally ended a long-lasting drought on approved MSC clinical products in the United States. While other jurisdictions-including Europe, Japan, India, and South Korea-have marketed autologous or allogeneic MSC products, the United States has lagged in its approval. The sponsor's significant efforts and investments, working closely with the FDA addressing concerns regarding clinical efficacy and consistent MSC potency through an iterative process that spanned several years, was rewarded with this landmark approval.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!