Determining adults' and children's strategies in mental arithmetic constitutes a central issue in the domain of numerical cognition. However, despite the considerable amount of research on this topic, the conclusions in the literature are not always coherent. Therefore, there is a need to carry on the investigation, and this is the reason why we developed the operand recognition paradigm (ORP). It capitalizes on the fact that, contrary to retrieval, calculation procedures degrade the memory traces of the operands involved in a problem. As a consequence, the use of calculation procedures is inferred from relatively long recognition times of the operands. However, it has been suggested that recognition times within the ORP do not reflect strategies but the difficulty of switching from a difficult task (calculation) to a simpler one (recognition). In order to examine this possibility, in a series of 3 experiments we equalized switch-cost variations in all conditions through the introduction of intermediate tasks between problem solving and recognition. Despite this neutralization, we still obtained the classical effects of the ORP, namely longer recognition times after addition than after comparison. We conclude that the largest part of the ORP effects is related to different strategy use and not to difficulty-related switch costs. The possible applications and promising outcomes of the ORP in and outside the field of numerical cognition are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1037/a0038120DOI Listing

Publication Analysis

Top Keywords

recognition times
12
operand recognition
8
recognition paradigm
8
numerical cognition
8
calculation procedures
8
recognition
7
orp
5
identifying strategies
4
strategies arithmetic
4
arithmetic operand
4

Similar Publications

We report a bithiophene-based fluorescence probe BDT (2,2'-(((1 E, 1'E)-[2,2'-bithiophene]-5,5'-diylbis(methaneylylidene))bis(azaneylylidene))bis(4-(tert-butyl)phenol)) for recognizing ClO. BDT selectively responded to ClO, leading to a blue fluorescence enhancement in a mixture of DMF/HEPES buffer (9:1, v/v). Importantly, BDT showed an ultrafast response (within 1 s) to ClO among the fluorescent turn-on chemosensors based on bithiophene.

View Article and Find Full Text PDF

Background: PAPP is widely used in Australia as a potent vertebrate bait, with potential for off-target ingestion and poisoning in domestic dogs. Whilst toxicosis and resulting methaemoglobinaemia is anecdotally known to occur, this is the first description in the literature. This study reports thirteen clinical cases of suspected Para-aminopropiophenone (PAPP) toxicity in dogs, with the aim of describing clinical presentation and current management of toxicosis in this species.

View Article and Find Full Text PDF

Glutathione serves as a common biomarkers in tumor diagnosis and treatment. The levels of its intracellular concentration permit detailed investigation of the tumor microenvironment. However, low polarization and weak Raman scattering cross-section make direct and indirect Raman detection challenging.

View Article and Find Full Text PDF

Abnormal locomotor patterns may occur in case of either motor damages or neurological conditions, thus potentially jeopardizing an individual's safety. Pathological gait recognition (PGR) is a research field that aims to discriminate among different walking patterns. A PGR-oriented system may benefit from the simulation of gait disorders by healthy subjects, since the acquisition of actual pathological gaits would require either a higher experimental time or a larger sample size.

View Article and Find Full Text PDF

MonoSeg: An Infrared UAV Perspective Vehicle Instance Segmentation Model with Strong Adaptability and Integrity.

Sensors (Basel)

January 2025

National Key Laboratory of Multispectral Information Intelligent Processing Technology, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430000, China.

Despite rapid progress in UAV-based infrared vehicle detection, achieving reliable target recognition remains challenging due to dynamic viewpoint variations and platform instability. The inherent limitations of infrared imaging, particularly low contrast ratios and thermal crossover effects, significantly compromise detection accuracy. Moreover, the computational constraints of edge computing platforms pose a fundamental challenge in balancing real-time processing requirements with detection performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!