Background: Haptic feedback is of critical importance in surgical tasks. However, conventional surgical robots do not provide haptic feedback to surgeons during surgery. Thus, in this study, a combined tactile and kinesthetic feedback system was developed to provide haptic feedback to surgeons during robotic surgery.
Methods: To assess haptic feasibility, the effects of two types of haptic feedback were examined empirically - kinesthetic and tactile feedback - to measure object-pulling force with a telesurgery robotics system at two desired pulling forces (1 N and 2 N). Participants answered a set of questionnaires after experiments.
Results: The experimental results reveal reductions in force error (39.1% and 40.9%) when using haptic feedback during 1 N and 2 N pulling tasks. Moreover, survey analyses show the effectiveness of the haptic feedback during teleoperation.
Conclusions: The combined tactile and kinesthetic feedback of the master device in robotic surgery improves the surgeon's ability to control the interaction force applied to the tissue. Copyright © 2014 John Wiley & Sons, Ltd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcs.1625 | DOI Listing |
Sensors (Basel)
January 2025
State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
Current teleoperated robotic systems for retinal surgery cannot effectively control subtle tool-to-tissue interaction forces. This limitation may lead to patient injury caused by the surgeon's mistakes. To improve the safety of retinal surgery, this paper proposes a haptic shared control framework for teleoperation based on a force-constrained supervisory controller.
View Article and Find Full Text PDFSensors (Basel)
January 2025
2Ai, School of Technology, IPCA, 4750-810 Barcelos, Portugal.
Virtual reality (VR) has gained significant attention in various fields including healthcare and industrial applications. Within healthcare, an interesting application of VR can be found in the field of physiotherapy. The conventional methodology for rehabilitating upper limb lesions is often perceived as tedious and uncomfortable.
View Article and Find Full Text PDFDiseases
January 2025
Department of Gynaecological Oncology, The Royal London Hospital, Barts Health NHS Trust, London E1 1FR, UK.
Background/objectives: For healthcare institutions developing a robotic programme, delivering value for patients, clinicians, and payers is key. However, the impact on the surgeon, training pathways, and logistics are often overlooked. We conducted a study on the impact of robotic surgery on surgeons, access to robotic surgical training, and factors associated with developing a successful robotic programme.
View Article and Find Full Text PDFPlast Reconstr Surg Glob Open
January 2025
Department of Plastic and Reconstructive Surgery, Royal Free NHS Foundation Trust, London, United Kingdom.
Background: There has been a delayed, yet steady uptake of robotic-assisted surgery over the past decade within the field of plastic surgery. In an era of rapidly evolving scientific and technological development, there is a need for an update on the current literature for robotic-assisted plastic surgery procedures.
Methods: Searches were conducted across major databases, including MEDLINE, Embase, and Central for published literature from March 2023 to December 2024.
J Biomech
January 2025
Biorobotics and Biomechanics Lab, Department of Mechanical Engineering, University of Maine, Orono, 04469, ME, United States of America. Electronic address:
Interlimb coordination can be used as a metric to study the response of the neuromuscular system to mechanical perturbations and behavioral information. Behavioral information providing haptic feedback on thigh angle has been shown to increase stride length and consequently walking speed, but the effect of such feedback on limb coordination has not been determined. The current work investigates the effects of this feedback on lower-limb coordination and examines if such effects are dependent on the age of the walker.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!