AI Article Synopsis

  • Brazil has a surplus of sucrose from sugarcane, enabling the production of high-value products like gluconic acid (GA) through multi-enzyme conversion using invertase, glucose oxidase, and catalase.
  • The study investigates the optimal conditions for GA production in an airlift reactor, focusing on temperature and pH, and determines that 40 °C and pH 6.0 are ideal for enzyme activity and stability.
  • Under these conditions, the maximum GA yield is reached within 3.8 hours, achieving full conversion of sucrose and glucose, with a productivity of about 7.0 g L(-1) h(-1).

Article Abstract

Sucrose from sugarcane is produced in abundance in Brazil, which provides an opportunity to manufacture other high-value products. Gluconic acid (GA) can be produced by multi-enzyme conversion of sucrose using the enzymes invertase, glucose oxidase, and catalase. In this process, one of the byproducts is fructose, which has many commercial applications. This work concerns the batch mode production of GA in an airlift reactor fed with sucrose as substrate. Evaluation was made of the influence of temperature and pH, as well as the thermal stability of the enzymes. Operational conditions of 40 °C and pH 6.0 were selected, based on the enzymatic activity profiles and the thermal stabilities. Under these conditions, the experimental data could be accurately described by kinetic models. The maximum yield of GA was achieved within 3.8 h, with total conversion of sucrose and glucose and a volumetric productivity of around 7.0 g L(-1) h(-1).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-014-1306-2DOI Listing

Publication Analysis

Top Keywords

gluconic acid
8
airlift reactor
8
conversion sucrose
8
sucrose
5
acid production
4
production sucrose
4
sucrose airlift
4
reactor multi-enzyme
4
multi-enzyme system
4
system sucrose
4

Similar Publications

The presence of high-risk human papillomavirus (HR-HPV) contributes to the development of cervical lesions and cervical cancer. Recent studies suggest that an imbalance in the cervicovaginal microbiota might be a factor in the persistence of HR-HPV infections. In this study, we collected 156 cervicovaginal fluid (CVF) of women with HR-HPV infection, which were divided into three groups (negative for intraepithelial lesions = 78, low/high-grade squamous intraepithelial lesions = 52/26).

View Article and Find Full Text PDF

A novel selective medium for isolation of Limosilactobacillus reuteri from dietary supplements.

J Food Drug Anal

December 2024

Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C.

Limosilactobacillus reuteri is a probiotic bacterium known for its numerous beneficial effects on human health and is commonly utilized in various dietary supplements. Previously, we encountered difficulties in isolating L. reuteri from retail dietary supplements containing complex probiotic compositions by using non-selective media such as de Man, Rogosa, and Sharpe (MRS) agar.

View Article and Find Full Text PDF

This study reveals the anti-tyrosinase activity of Ganoderma formosanum extracts, pinpointing compounds including gluconic acid, mesalamine, L-pyroglutamic acid, esculetin, 5-hydroxyindole, and salicylic acid, as effective melanin production inhibitors in melanoma cells and zebrafish embryos. Furthermore, multiple molecular docking simulations provided insights into interactions between the identified compounds and tyrosinase, increasing binding affinity up to -16.36 kcal/mol.

View Article and Find Full Text PDF

The metabolites gluconic acid, 5-ketogluconic acid, proline, and glutamic acid, produced by Pseudomonas reptilivora B-6bs, are industrially important, particularly in food and pharmaceutical sectors. However, producing these metabolites involves biotin supplementation to enhance yields, which is an expensive additive, and reducing its use can significantly lower production costs. Thus, This study aimed to enhance the production of gluconic acid, 5-ketogluconic acid, proline, and glutamic acid without biotin supplementation.

View Article and Find Full Text PDF

On-demand release of insulin using glucose-responsive chitosan-based three-compartment microspheres.

Int J Biol Macromol

December 2024

Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Article Synopsis
  • Researchers have developed glucose-responsive insulin release systems, using chitosan-based three-compartment microspheres (TCMs) to achieve prolonged insulin delivery.
  • The TCMs release insulin based on blood glucose levels, as glucose generates gluconic acid, which degrades chitosan and triggers insulin release from compartments with varying concentrations.
  • In tests, TCMs showed longer-lasting insulin release and effective blood glucose regulation in diabetic cell models, demonstrating promising potential for diabetes treatment and insulin research.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!