In vivo formation of N-acyl-fumonisin B1.

Mycotoxin Res

Institute of Food Chemistry, Westfälische Wilhelms-Universität, Münster, Germany.

Published: February 2015

Fumonisins are fungal toxins found in corn and in corn-based foods. Fumonisin B1 (FB1) is the most common and is toxic to animals, causes cancer in rodents, and is a suspected risk factor for cancer and birth defects in humans. The hydrolyzed form of FB1 (HFB1) also occurs in foods and is metabolized by rats to compounds collectively known as N-acyl-HFB1 (also known as N-acyl-AP1). N-acyl-HFB1 is structurally similar to ceramides, metabolites which have important structural and signaling functions in cells. FB1 is N-acylated in vitro to ceramide-like metabolites which, like FB1, are cytotoxic. However, metabolism of FB1 and inhibition of ceramide synthase by its metabolites in vivo has not been demonstrated. Male rats were dosed ip with 0.5, 1, or 2 mg/kg body weight FB1 on five consecutive days and the liver and kidney thereafter processed for chemical analysis. N-acyl derivatives of fumonisin B1 were identified for the first time in these principal target organs of FB1 in rats, at levels up to 0.4 nmol/g tissue using mass spectrometry. The N-acyl chain length of the metabolites varied in a tissue-dependent manner with C16 derivatives predominating in the kidney and C24 derivatives being prevalent in the liver. The toxicological significance of N-acyl-fumonisins is not known and warrants investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4298654PMC
http://dx.doi.org/10.1007/s12550-014-0211-5DOI Listing

Publication Analysis

Top Keywords

fb1
7
vivo formation
4
formation n-acyl-fumonisin
4
n-acyl-fumonisin fumonisins
4
fumonisins fungal
4
fungal toxins
4
toxins corn
4
corn corn-based
4
corn-based foods
4
foods fumonisin
4

Similar Publications

Rice ( L.) is the most important food in Vietnam. However, rice is often lost in post-harvest due to fungal growth and mycotoxins contamination.

View Article and Find Full Text PDF

Identifying biomarkers of mycotoxin effects in chickens will provide an opportunity for early intervention to reduce the impact of mycotoxicosis. This study aimed to identify whether serum enzyme concentrations, gut integrity, and liver miRNAs can be potential biomarkers for fumonisin B1 (FB1), deoxynivalenol (DON), and zearalenone (ZEA) toxicity in broiler birds as early as 14 days after exposure. A total of 720 male broiler chicks were distributed to six treatment groups: T1: control group (basal diet), T2 (2 FB1 + 2.

View Article and Find Full Text PDF

Pyrrocidines A and B demonstrate synergistic inhibition of growth.

Front Microbiol

January 2025

Toxicology and Mycotoxin Research Unit, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States.

-a mycotoxigenic fungus and food safety threat-coinhabits maize kernels with . This protective endophyte produces secondary metabolites of interest, pyrrocidines A and B, which inhibit the growth of and specifically block fumonisin biosynthesis. Previous transcriptomic analyses found (FVEG_00314), a gene adjacent to the fumonisin biosynthetic gene cluster, to be induced over 4,000-fold in response to pyrrocidine challenge.

View Article and Find Full Text PDF

Food and agricultural commodities endure consistent contamination by mycotoxins, low molecular weight fungal metabolites, which pose severe health implications to humans together with staggering economic losses. Herein, a ratiometric aptasensor was constructed using silver-coated porous silicon (Ag-pSi) used as an efficient surface-enhanced Raman scattering (SERS) substrate. The bioassay included direct detection of fumonisin B (FB), an abundant and widespread contaminant, by a specific aptamer sequence immobilized on the porous transducer.

View Article and Find Full Text PDF

As a Group 2B carcinogen, accurate and efficient detection for Fumonisin B1 (FB1) is essential. The emergence of aptamers presents a viable solution to meet this demand. In this study, a truncated aptamer named Apt40 was developed, showcasing remarkable binding affinity to FB1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!