New approaches to selectively target cancer-associated matrix metalloproteinase activity.

Cancer Metastasis Rev

Departments of Tumor Biology, Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., SRB-3, Tampa, FL, USA.

Published: December 2014

Heightened matrix metalloproteinase (MMP) activity has been noted in the context of the tumor microenvironment for many years, and causal roles for MMPs have been defined across the spectrum of cancer progression. This is primarily due to the ability of the MMPs to process extracellular matrix (ECM) components and to regulate the bioavailability/activity of a large repertoire of cytokines and growth factors. These characteristics made MMPs an attractive target for therapeutic intervention but notably clinical trials performed in the 1990s did not fulfill the promise of preclinical studies. The reason for the failure of early MMP inhibitor (MMPI) clinical trials that are multifold but arguably principal among them was the inability of early MMP-based inhibitors to selectively target individual MMPs and to distinguish between MMPs and other members of the metzincin family. In the decades that have followed the MMP inhibitor trials, innovations in chemical design, antibody-based strategies, and nanotechnologies have greatly enhanced our ability to specifically target and measure the activity of MMPs. These advances provide us with the opportunity to generate new lines of highly selective MMPIs that will not only extend the overall survival of cancer patients, but will also afford us the ability to utilize heightened MMP activity in the tumor microenvironment as a means by which to deliver MMPIs or MMP activatable prodrugs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10555-014-9530-4DOI Listing

Publication Analysis

Top Keywords

selectively target
8
matrix metalloproteinase
8
mmp activity
8
tumor microenvironment
8
clinical trials
8
mmp inhibitor
8
mmps
6
mmp
5
approaches selectively
4
target
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!