Heparan sulfate (HS) polysaccharide chains have been shown to orchestrate distinct biological functions in several systems. Study of HS structure-function relations is, however, hampered due to the lack of availability of HS in sufficient quantities as well as the molecular heterogeneity of naturally occurring HS. Enzymatic synthesis of HS is an attractive alternative to the use of naturally occurring HS, as it reduces molecular heterogeneity, or a long and daunting chemical synthesis of HS. Heparosan, produced by E. coli K5 bacteria, has a structure similar to the unmodified HS backbone structure and can be used as a precursor in the enzymatic synthesis of HS-like polysaccharides. Here, we describe an enzymatic approach to synthesize several specifically sulfated HS polysaccharides for biological studies using the heparosan backbone and a combination of recombinant biosynthetic enzymes such as C5-epimerase and sulfotransferases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-1714-3_2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!