The mitochondrial carnitine/acylcarnitine carrier catalyzes the transport of carnitine and acylcarnitines by antiport as well as by uniport with a rate slower than the rate of antiport. The mechanism of antiport resulting from coupling of two opposed uniport reactions was investigated by site-directed mutagenesis. The transport reaction was followed as [(3)H]carnitine uptake in or efflux from proteoliposomes reconstituted with the wild type or mutants, in the presence or absence of a countersubstrate. The ratio between the antiport and uniport rates for the wild type was 3.0 or 2.5, using the uptake or efflux procedure, respectively. This ratio did not vary substantially in mutants H29A, K35R, G121A, E132A, K135A, R178A, D179E, E191A, K194A, K234A, and E288A. A ratio of 1.0 was measured for mutant K35A, indicating a loss of antiport function by this mutant. Ratios of >1.0 but significantly lower than that of the wild type were measured for mutants D32A, K97A, and D231A, indicating the involvement of these residues in the antiport mechanism. To investigate the role of the countersubstrate in the conformational changes underlying the transport reaction, the m-state of the transporter (opened toward the matrix side) was specifically labeled with N-ethylmaleimide while the c-state of the carrier (opened toward the cytosolic side) was labeled with fluorescein maleimide. The labeling results indicated that the addition of an external substrate, on one hand, reduced the amount of protein in the m-state and, on the other, increased the protein fraction in the c-state. This substrate-induced conformational change was abolished in the protein lacking K35, pointing to the role of this residue as a sensor in the mechanism of the antiport reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi5009112 | DOI Listing |
NMR Biomed
February 2025
Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA.
Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.
View Article and Find Full Text PDFBMC Cardiovasc Disord
January 2025
Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China.
Background: The dried root of Inula helenium L., known as Inulae Radix in Mongolian medicine, is a widely used heat-clearing plant drug within the Asteraceae family. Alantolactone (ATL), a compound derived from Inulae Radix, is a sesquiterpene lactone with a range of biological activities.
View Article and Find Full Text PDFAdv Mater
January 2025
Hubei key laboratory of energy storage and power battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China.
The inherent trade-off between permeability and selectivity has constrained further improvement of passive linear force-electric conversion performance in nanofluidic pressure sensors. To overcome this limitation, a 3D nanofluidic membrane with high mechanical strength utilizing aramid nanofibers/carbon nanofiber (ANF/CNF) dual crosslinking is developed. Due to the abundant surface functional groups of CNF and the high mechanical strength of ANF, this large-scale integrated 3D nanofluidic membrane exhibits advantages of high flux, high porosity, and short ion transport path, demonstrating superior force-electric response compared to conventional 1D and 2D configurations.
View Article and Find Full Text PDFFASEB J
January 2025
School of Pharmacy, Anhui Medical University, Hefei, China.
The activation of acid-sensing ion channel 1a (ASIC1a) in response to extracellular acidification leads to an increase in extracellular calcium influx, thereby exacerbating the degeneration of articular chondrocytes in rheumatoid arthritis (RA). It has been suggested that the inhibition of extracellular calcium influx could potentially impede chondrocyte ferroptosis. The cystine transporter, solute carrier family 7 member 11 (SLC7A11), is recognized as a key regulator of ferroptosis.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Pulmonary diseases are a major category of diseases that pose a threat to human health. The most common drugs currently used to treat lung diseases are still chemical drugs, but this may lead to drug resistance and damage to healthy organs in the body. Therefore, developing new drugs is an urgent task.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!