Electronic theory calculations are applied to the study of the UO molecule and the UO(+) ion. Relativistic effective core potentials are used along with the accompanying valence spin-orbit operators. Polarized double-ς and triple-ς basis sets are used. Molecular orbitals are obtained from state-averaged multiconfiguration self-consistent field calculations and then used in multireference spin-orbit configuration interaction calculations with a number of millions of terms. The ground state of UO has open shells of 5f(3)7s(1), angular momentum Ω = 4, and a spin-orbit-induced avoided crossing near the equilibrium internuclear distance. Many UO excited states are studied with rotational constants, intensities, and experimental comparisons. The ground state of UO(+) is of 5f(3) nature with Ω = 9/2. Many UO(+) excited states are also studied. The open-shell nature of both UO and UO(+) leads to many low-lying excited states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp505722y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!