Nuclear forward scattering of synchrotron radiation by 99Ru.

Phys Rev Lett

Institute Charles Gerhard AIME UMR CNRS 5253, Université Montpellier 2, F-34095 Montpellier, France and Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, France.

Published: October 2014

AI Article Synopsis

Article Abstract

We measured nuclear forward scattering spectra utilizing the (99)Ru transition, 89.571(3) keV, with a notably mixed E2/M1 multipolarity. The extension of the standard evaluation routines to include mixed multipolarity allows us to extract electric and magnetic hyperfine interactions from (99)Ru-containing compounds. This paves the way for several other high-energy Mössbauer transitions, E ∼ 90 keV. The high energy of such transitions allows for operando nuclear forward scattering studies in real devices.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.113.147601DOI Listing

Publication Analysis

Top Keywords

nuclear forward
12
forward scattering
12
scattering synchrotron
4
synchrotron radiation
4
radiation 99ru
4
99ru measured
4
measured nuclear
4
scattering spectra
4
spectra utilizing
4
utilizing 99ru
4

Similar Publications

In recent decades, research on mechanotransduction has advanced considerably, focusing on the effects of audible acoustic waves (AAWs) and low-vibration stimulation (LVS), which has propelled the field of sonobiology forward. Taken together, the current evidence demonstrates the influence of these biosignals on key cellular processes, such as growth, differentiation and migration in mammalian cells, emphasizing the determining role of specific physical parameters during stimulation, such as frequency, sound pressure level/amplitude and exposure time. These mechanical waves interact with various cellular elements, including ion channels, primary cilia, cell-cell adhesion receptors, cell-matrix and extracellular matrix proteins, and focal adhesion complexes.

View Article and Find Full Text PDF

Opening the gate: Complexity and modularity of the nuclear pore scaffold and basket.

Curr Opin Cell Biol

January 2025

Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France. Electronic address:

Nuclear pore complexes (NPCs) are giant molecular assemblies that form the gateway between the nucleus and the cytoplasm and accommodate the bidirectional transport of a large variety of cargoes. Recent years have seen tremendous advances in our understanding of their building principles and have in particular called attention to the flexibility and variability of NPC composition and structure. Here, we review these recent advances and discuss how the newest technologies push the boundaries of nuclear pore research forward, with a specific highlight on the NPC scaffold and a prominent pore appendage, the nuclear basket, whose architecture has long been elusive.

View Article and Find Full Text PDF

The electrical conductivity of human tissues is a major source of uncertainty when modelling the interactions between electromagnetic fields and the human body. The aim of this study is to estimate human tissue conductivities in vivo over the low-frequency range, from 30 Hz to 1 MHz. Noninvasive impedance measurements, medical imaging, and 3D surface scanning were performed on the forearms of ten volunteer test subjects.

View Article and Find Full Text PDF

Machine learning outperforms humans in microplastic characterization and reveals human labelling errors in FTIR data.

J Hazard Mater

December 2024

Discipline of Chemistry, The University of Newcastle, University Drive, Newcastle, New South Whales 2308, Australia; School of Chemistry, Monash University, Wellington Road, Melbourne, Victoria 3800, Australia. Electronic address:

Microplastics are ubiquitous and appear to be harmful, however, the full extent to which these inflict harm has not been fully elucidated. Analysing environmental sample data is challenging, as the complexity in real data makes both automated and manual analysis either unreliable or time-consuming. To address challenges, we explored a dense feed-forward neural network (DNN) for classifying Fourier transform infrared (FTIR) spectroscopic data.

View Article and Find Full Text PDF

Alpha Atlas: Mapping global production of α-emitting radionuclides for targeted alpha therapy.

Nucl Med Biol

December 2024

Life Sciences Division, TRIUMF, BC V6T 2A3 Vancouver, British Columbia, Canada; Department of Chemistry, University of British Columbia, V6T 1Z1 Vancouver, British Columbia, Canada.

Targeted Alpha Therapy has shown great promise in cancer treatment, sparking significant interest over recent decades. However, its broad adoption has been impeded by the scarcity of alpha-emitters and the complexities related to their use. The availability of these radionuclides is often constrained by the intricate production processes and purification, as well as regulatory and logistical challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!