Characterization of several potentiometric cells without a liquid junction has been carried out in universal buffer, aqueous HCl, and artificial seawater media. The electrodes studied include Ion Sensitive Field Effect Transistor (ISFET) pH electrodes, and Chloride-Ion Selective Electrodes (Cl-ISE) directly exposed to the solution. These electrodes were compared directly to the conventional hydrogen electrode and silver-silver chloride electrode in order to report the degree to which they obey ideal Nernstian laws. These data provide a foundation for operating the ISFET|Cl-ISE pair in seawater as a pH sensor. In order to obtain the highest quality pH measurements from this sensor, its response to changes in pH and salinity must be properly characterized. Our results indicate near-ideal Nernstian response for both electrodes over a wide range of pH (2-12) and Cl(-) molality (0.01-1). We conclude that the error due to sub-Nernstian response of the cell ISFET|seawater|Cl-ISE over the range of seawater pH and salinity is negligible (<0.0001 pH). The cross sensitivity of the Cl-ISE to Br(-) does not seem to be a significant source of error (<0.003 pH) in seawater media in the salinity range 20-35.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac502631z | DOI Listing |
J Am Chem Soc
December 2024
Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.
The SARS-CoV-2 E protein conducts cations across the cell membrane to cause pathogenicity to infected cells. The high-resolution structures of the E transmembrane domain (ETM) in the closed state at neutral pH and in the open state at acidic pH have been determined. However, the ion conduction mechanism remains elusive.
View Article and Find Full Text PDFMikrochim Acta
December 2024
Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
A novel detection technique is introduced that offers sensitive and reliable ochratoxin A (OTA) detection. The method leverages the etching of gold nanorods (AuNRs) stabilized by hexadecyl trimethyl ammonium bromide (CTAB) using the oxidized form of 3,3',5,5'-tetramethyl benzidine sulfate (TMB), creating a susceptible multicolor visual detection system for OTA. The visual detection is enabled by Mg-assisted DNAzyme catalysis combined with the catalytic hairpin assembly (CHA) signal amplification strategy.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Hiroshima, Japan.
We investigated oscillatory motion of a camphor disk floating on water containing 5 mM hexylethylenediaminium trifluoroacetate (HHexen-TFA) as an ionic liquid (IL). The frequency of the oscillatory motion increased with increasing concentrations of the transition metal ions Cu and Ni but was insensitive to Na, Ca, and Mg, the typical metal ions in the water phase. The surface tension of the water phase containing 5 mM HHexen-TFA also increased with increasing concentrations of Cu and Ni but was insensitive to Na, Ca, and Mg.
View Article and Find Full Text PDFMol Cell Proteomics
December 2024
Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States. Electronic address:
Multiplexed proteomics has become a powerful tool for investigating biological systems. Using balancer-peptide conjugates (e.g.
View Article and Find Full Text PDFChemosphere
December 2024
Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China. Electronic address:
Herein, conductive polyaniline (PANI) was chemically polymerized on the surface of a bismuth-based metal-organic framework (Bi-MOF) to form conductive PANI@Bi-MOF composites. FT-IR and PXRD measurements verified the successful production of PANI@Bi-MOF, whereas SEM, TEM, and EDAX mapping demonstrated that PANI was uniformly coated on the surface of Bi-MOF. The resulting PANI@Bi-MOF composites were characterized by cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS), then used to develop a sensitive electrochemical sensor for the detection of lead ions based on differential pulse anodic stripping voltammetry (DPASV).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!