Most industries in the world treat their wastewaters with a conventional coagulation-flocculation process using alum as coagulant, polyacrylamide (PAM) as flocculant and lime as coagulant aid. To reduce the use of chemical products in the process, experiments were conducted to substitute the PAM with cactus juice (CJ) as flocculant. From the obtained data, it was concluded that the substitution of PAM with CJ in the coagulation-flocculation process was very effective, compared with PAM. Depending on the wastewater's origin, the bioflocculant showed removal efficiencies of 83.3-88.7% for suspended solids (SS) and 59.1-69.1% for chemical oxygen demand (COD). Lime addition enhanced the coagulation-flocculation process in the presence of CJ similarly to the PAM with efficiencies greater than 90% for both SS and COD. The CJ powder's infrared (IR) spectrum showed the main functional groups present in PAM. It was concluded that CJ as a flocculant fits well with the definition of sustainability and it is appropriate for countries that have regions where cactuses grow naturally.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2014.328DOI Listing

Publication Analysis

Top Keywords

coagulation-flocculation process
16
cactus juice
8
pam
6
process
5
juice bioflocculant
4
coagulation-flocculation
4
bioflocculant coagulation-flocculation
4
process industrial
4
industrial wastewater
4
wastewater treatment
4

Similar Publications

Olive mill wastewater treatment using coagulation/flocculation and filtration processes.

Heliyon

November 2024

Saint Joseph University of Beirut, Faculty of Pharmacy, Department of Nutrition, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut, 1107 2180, Lebanon.

Olive mill wastewater (OMWW), a pollutant resulting from the olive oil industry, poses a serious ecological challenge due to its high pollution load. This effluent is highly concentrated in chemical oxygen demand (COD), which is 200 times higher than that of sewage wastewater. Moreover, OMWW is characterized by a strong acidity, high content of fatty matter, and high concentration of phenolic compounds.

View Article and Find Full Text PDF

Microplastics, as a novel type of environmental pollutant, have attracted notable attention in environmental research due to their widespread distribution and potential biological toxicity. Drinking water treatment plants play a crucial role in ensuring the safety of the water supply, with a particular focus on the removal efficiency of microplastics in drinking water treatment plants. Different treatment processes in water plants exhibit various removal efficiencies of microplastics and they operate through distinct removal mechanisms.

View Article and Find Full Text PDF

A comprehensive review on arsenic contamination in groundwater: Sources, detection, mitigation strategies and cost analysis.

Environ Res

January 2025

Clean Energy Technologies Research Institute (CETRI), Process Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India. Electronic address:

While groundwater is commonly perceived as safe, the excessive presence of trace metals, particularly arsenic (As), can pose significant health hazards. This review examines the current scenario of pollutants and their mitigations focusing on As contamination in groundwater across multiple nations, with a specific emphasis on the Indian Peninsula. Arsenic pollution surpasses the WHO limit of 10 ppb in 107 countries, impacting around 230 million people worldwide, with a substantial portion in Asia, including 20 states and four union territories in India.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explored two methods for removing rhodamine B from water: adsorption using biochar from olive stones (OSB), achieving a 97.79% removal rate, and coagulation-flocculation with FeCl, which performed best at a dosage of 2000 mg/L and pH of 2.
  • - The adsorption process using OSB was found to be spontaneous and beneficial, with a maximum adsorption capacity of 11.82 mg/g and the ability to reuse the biochar for four cycles.
  • - A combined method utilizing both coagulation-flocculation and adsorption was tested, leading to improved removal efficiency compared to either method alone, highlighting the advantages of integrating the two processes.
View Article and Find Full Text PDF

Pollution from organic molecules is a major environmental issue that needs to be addressed because of the negative impacts of both the harmfulness of the molecule structures and the toxicity that can spread through natural media. This is mainly due to their unavoidable partial oxidation under exposure to air and solar radiation into diverse derivatives. Even when insoluble, the latter can be dispersed in aqueous media through solvatation and/or complexation with soluble species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!