A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electron beam quality k(Q,Q0) factors for various ionization chambers: a Monte Carlo investigation with PENELOPE. | LitMetric

Electron beam quality k(Q,Q0) factors for various ionization chambers: a Monte Carlo investigation with PENELOPE.

Phys Med Biol

Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada, Spain. Instituto del Cáncer-SOLCA, Cuenca, Ecuador. Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Cuenca, Cuenca, Ecuador.

Published: November 2014

In this work we calculate the beam quality correction factor k(Q,Q0) for various plane-parallel ionization chambers. A set of Monte Carlo calculations using the code PENELOPE/PENEASY have been carried out to calculate the overall correction factor f(c,Q) for eight electron beams corresponding to a Varian Clinac 2100 C/D, with nominal energies ranging between 6 MeV and 22 MeV, for a (60)Co beam, that has been used as the reference quality Q0 and also for eight monoenergetic electron beams reproducing the quality index R50 of the Clinac beams. Two field sizes, 10 × 10 cm(2) and 20 × 20 cm(2) have been considered. The k(Q,Q0) factors have been calculated as the ratio between f(c,Q) and f(c,Q0). Values for the Exradin A10, A11, A11TW, P11, P11TW, T11 and T11TW ionization chambers, manufactured by Standard Imaging, as well as for the NACP-02 have been obtained. The results found with the Clinac beams for the two field sizes analyzed show differences below 0.6%, even in the case of the higher energy electron beams. The k(Q,Q0) values obtained with the Clinac beams are 1% larger than those found with the monoenergetic beams for the higher energies, above 12 MeV. This difference can be ascribed to secondary photons produced in the linac head and the air path towards the phantom. Contrary to what was quoted in a previous work (Sempau et al 2004 Phys. Med. Biol. 49 4427-44), the beam quality correction factors obtained with the complete Clinac geometries and with the monoenergetic beams differ significantly for energies above 12 MeV. Material differences existing between chambers that have the same geometry produce non-negligible modifications in the value of these correction factors.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0022-3727/59/21/6673DOI Listing

Publication Analysis

Top Keywords

beam quality
12
ionization chambers
12
electron beams
12
clinac beams
12
kqq0 factors
8
monte carlo
8
quality correction
8
correction factor
8
beams
8
beams field
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!