This article reports novel results on the toxic mechanisms of action of amine- and hydroxyl-terminated poly(amidoamine) (PAMAM) dendrimers toward microorganisms of environmental relevance, namely a cyanobacterium of the genus Anabaena and the green alga Chlamydomonas reinhardtii. We used PAMAM ethylenediamine core dendrimers from generations G2 to G4, which displayed a positive charge, measured as ζ-potential, in culture media. All amine-terminated and most remarkably the G4 hydroxyl-terminated dendrimer inhibited the growth of both microorganisms. The effect on the growth of the green alga was significantly higher than that on the cyanobacterium. With concentrations expressed in terms of molarity, there was a clear relationship between dendrimer generation and toxicity, with higher toxicity for higher generation. Hormesis was observed for hydroxyl-terminated dendrimers at low concentrations. The cationic dendrimers and G4-OH significantly increased the formation of reactive oxygen species (ROS) in both organisms. ROS formation was not related with the chloroplast or photosynthetic membranes and photosystem II photochemistry was unaffected. Cell damage resulted in cytoplasm disorganization and cell deformities and was associated to an increase in ROS formation and lipid peroxidation in mitochondria in the green alga; cell wall and membrane disruption with apparent loss of cytoplasmic contents was found in the cyanobacterium. It was determined for the first time that cationic PAMAM dendrimers were quickly and largely internalized by both organisms. These results warn against the generalization of the use of dendrimers, which may pose significant risk for the environment and particularly for primary producers which are determinant for the health of natural ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/17435390.2014.969345 | DOI Listing |
Nat Commun
January 2025
Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
Intracellular recycling via autophagy is governed by post-translational modifications of the autophagy-related (ATG) proteins. One notable example is ATG4-dependent delipidation of ATG8, a process that plays critical but distinct roles in autophagosome formation in yeast and mammals. Here, we aim to elucidate the specific contribution of this process to autophagosome formation in species representative of evolutionarily distant green plant lineages: unicellular green alga Chlamydomonas reinhardtii, with a relatively simple set of ATG genes, and a vascular plant Arabidopsis thaliana, harboring expanded ATG gene families.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
January 2025
Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan.
Dyneins are huge motor protein complexes that are essential for cell motility, cell division, and intracellular transport. Dyneins are classified into three major subfamilies, namely cytoplasmic, intraflagellar-transport (IFT), and ciliary dyneins, based on their intracellular localization and functions. Recently, several near-atomic resolution structures have been reported for cytoplasmic/IFT dyneins.
View Article and Find Full Text PDFNat Plants
January 2025
Boyce Thompson Institute, Ithaca, NY, USA.
Pyrenoid-based CO-concentrating mechanisms (pCCMs) turbocharge photosynthesis by saturating CO around Rubisco. Hornworts are the only land plants with a pCCM. Owing to their closer relationship to crops, hornworts could offer greater translational potential than the green alga Chlamydomonas, the traditional model for studying pCCMs.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China. Electronic address:
The widespread use of copper (Cu) in industrial and agricultural settings leads to the accumulation of excess Cu within aquatic ecosystems, posing a threat to organism health. Microalgal bioremediation has emerged as a popular and promising solution to mitigate the risks. Nevertheless, the genetic underpinnings and engineering tactics involved in heavy metal bioremediation by microalgae remain inadequately elucidated.
View Article and Find Full Text PDFAlgal Res
June 2024
Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy.
The green alga (formerly ) is a primary source of astaxanthin, a ketocarotenoid with high antioxidant activity and several industrial applications. Here, the highly repetitive genome was reconstructed by exploiting next-generation sequencing integrated with Hi-C scaffolding, obtaining a 151 Mb genome assembly in 32 scaffolds at a near-chromosome level with high continuity. Surprisingly, the distribution of the single-nucleotide-polymorphisms identified demonstrates a diploid configuration for the genome, further validated by Sanger sequencing of heterozygous regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!