Background/objectives: Artemisinin (AT), an active compound in Arternisia annua, is well known as an anti-malaria drug. It is also known to have several effects including anti-oxidant, anti-inflammation, and anti-cancer activities. To date, the effect of AT on vascular disorders has not been studied. In this study, we investigated the effects of AT on the migration and proliferation of vascular smooth muscle cells (VSMC) stimulated by platelet-derived growth factor BB (PDGF-BB).
Materials/methods: Aortic smooth muscle cells were isolated from Sprague-Dawley rats. PDGF-BB stimulated VSMC migration was measured by the scratch wound healing assay and the Boyden chamber assay. Cell viability was determined by using an EZ-Cytox Cell Viability Assay Kit. The production of reactive oxygen species (ROS) in PDGF-BB stimulated VSMC was measured through H2DCF-DA staining. We also determined the expression levels of signal proteins relevant to ROS, including measures of extracellular signal-regulated kinase (ERK) 1/2 measured by western blot analysis and matrix metalloproteinase (MMP) 9 measured by reverse transcription-polymerase chain reaction (RT-PCR).
Results: AT (10 µM and 30 µM) significantly reduced the proliferation and migration of PDGF-BB stimulated VSMC in a dose-dependent manner. The production of ROS, normally induced by PDGF-BB, is reduced by treatment with AT at both concentrations. PDGF-BB stimulated VSMC treated with AT (10 µM and 30 µM) have reduced phosphorylation of ERK1/2 and inhibited MMP9 expression compared to untreated PDGF-BB stimulated VSMC.
Conclusions: We suggest, based on these results, that AT may exert an anti-atherosclerotic effect on PDGF-BB stimulated VSMCs by inhibiting their proliferation and migration through down-regulation of ERK1/2 and MMP9 phosphorylation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4198964 | PMC |
http://dx.doi.org/10.4162/nrp.2014.8.5.521 | DOI Listing |
Background: Multiple sclerosis (MS) is a chronic autoimmune disease damaging the central nervous system. Diminished inflammatory disease activity (DA) as people with MS (pwMS) age motivated randomized clinical trials assessing disease-modifying therapy (DMT) discontinuation in older pwMS given the concern for risks outweighing benefits. This study aims to examine whether peripheral production of Myelin Basic Protein (MBP)-driven cytokine responses mediate the aging-associated decline in MS inflammatory DA.
View Article and Find Full Text PDFRespir Res
December 2024
Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Background: Pulmonary hypertension (PH) is a malignant vascular disease characterized by pulmonary arterial remodeling. Neural cell adhesion molecule 1 (NCAM1) is a cell surface glycoprotein that is involved in a variety of diseases, including cardiovascular disease. However, the role of NCAM1 in PH remains underexplored.
View Article and Find Full Text PDFAngiogenesis
December 2024
Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy.
Am J Physiol Lung Cell Mol Physiol
November 2024
Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA.
The objective of this study was to assess fibrinogen (FIB) co-modified with citrulline (CIT) and/or malondialdehyde-acetaldehyde (MAA) initiates macrophage-fibroblast interactions leading to extracellular matrix (ECM) deposition that characterizes rheumatoid arthritis-associated interstitial lung disease (RA-ILD). Macrophages (Mϕ) were stimulated with native-FIB, FIB-CIT, FIB-MAA or FIB-MAA-CIT. Supernatants (SN) (Mϕ-SN [U-937-derived] or MϕP-SN [PBMC-derived]) or direct antigens were co-incubated with human lung fibroblasts (HLFs).
View Article and Find Full Text PDFPLoS One
November 2024
Vinmec Hi-Tech Center, Vinmec Healthcare System, Hanoi, Vietnam.
Mesenchymal stem cell (MSC)-derived exosomes (EXs) have emerged as promising therapeutic agents for wound healing. However, the optimal conditions for manufacturing MSC-derived EXs that maximize their wound-healing potential have yet to be established. Hence, we compared the efficacy of five different MSC culture media, including three different serum-free, a platelet-supplemented, and a fetal bovine serum-supplemented media, in exosome manufacturing for wound healing applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!