The RNA-binding protein fused-in-sarcoma (FUS) has been associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), two neurodegenerative disorders that share similar clinical and pathological features. Both missense mutations and overexpression of wild-type FUS protein can be pathogenic in human patients. To study the molecular and cellular basis by which FUS mutations and overexpression cause disease, we generated novel transgenic mice globally expressing low levels of human wild-type protein (FUS(WT)) and a pathological mutation (FUS(R521G)). FUS(WT) and FUS(R521G) mice that develop severe motor deficits also show neuroinflammation, denervated neuromuscular junctions, and premature death, phenocopying the human diseases. A portion of FUS(R521G) mice escape early lethality; these escapers have modest motor impairments and altered sociability, which correspond with a reduction of dendritic arbors and mature spines. Remarkably, only FUS(R521G) mice show dendritic defects; FUS(WT) mice do not. Activation of metabotropic glutamate receptors 1/5 in neocortical slices and isolated synaptoneurosomes increases endogenous mouse FUS and FUS(WT) protein levels but decreases the FUS(R521G) protein, providing a potential biochemical basis for the dendritic spine differences between FUS(WT) and FUS(R521G) mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226112 | PMC |
http://dx.doi.org/10.1073/pnas.1406162111 | DOI Listing |
Neurotherapeutics
September 2024
Department of Neurology & Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC Canada. Electronic address:
J Clin Invest
March 2024
Department of Medicine, Division of Nephrology and Hypertension, and.
Uncontrolled accumulation of extracellular matrix leads to tissue fibrosis and loss of organ function. We previously demonstrated in vitro that the DNA/RNA-binding protein fused in sarcoma (FUS) promotes fibrotic responses by translocating to the nucleus, where it initiates collagen gene transcription. However, it is still not known whether FUS is profibrotic in vivo and whether preventing its nuclear translocation might inhibit development of fibrosis following injury.
View Article and Find Full Text PDFActa Neuropathol Commun
November 2023
Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec City, QC, Canada.
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are related neurodegenerative diseases that belong to a common disease spectrum based on overlapping clinical, pathological and genetic evidence. Early pathological changes to the morphology and synapses of affected neuron populations in ALS/FTD suggest a common underlying mechanism of disease that requires further investigation. Fused in sarcoma (FUS) is a DNA/RNA-binding protein with known genetic and pathological links to ALS/FTD.
View Article and Find Full Text PDFGlia
July 2022
Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Genetic mutations that cause amyotrophic lateral sclerosis (ALS), a progressively lethal motor neuron disease, are commonly found in ubiquitously expressed genes. In addition to direct defects within motor neurons, growing evidence suggests that dysfunction of non-neuronal cells is also an important driver of disease. Previously, we demonstrated that mutations in DNA/RNA binding protein fused in sarcoma (FUS) induce neurotoxic phenotypes in astrocytes in vitro, via activation of the NF-κB pathway and release of pro-inflammatory cytokine TNFα.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2014
Departments of Neuroscience and
The RNA-binding protein fused-in-sarcoma (FUS) has been associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), two neurodegenerative disorders that share similar clinical and pathological features. Both missense mutations and overexpression of wild-type FUS protein can be pathogenic in human patients. To study the molecular and cellular basis by which FUS mutations and overexpression cause disease, we generated novel transgenic mice globally expressing low levels of human wild-type protein (FUS(WT)) and a pathological mutation (FUS(R521G)).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!