Rapamycin-induced metabolic defects are reversible in both lean and obese mice.

Aging (Albany NY)

The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio TX 78245, USA. The Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA. Departments of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio TX 78245, USA.

Published: September 2014

The inhibition of mTOR (mechanistic target of rapamycin) by the macrolide rapamycin has many beneficial effects in mice, including extension of lifespan and reduction or prevention of several age-related diseases. At the same time, chronic rapamycin treatment causes impairments in glucose metabolism including hyperglycemia, glucose intolerance and insulin resistance. It is unknown whether these metabolic effects of rapamycin are permanent or whether they can be alleviated. Here, we confirmed that rapamycin causes glucose intolerance and insulin resistance in both inbred and genetically heterogeneous mice fed either low fat or high fat diets, suggesting that these effects of rapamycin are independent of genetic background. Importantly, we also found that these effects were almost completely lost within a few weeks of cessation of treatment, showing that chronic rapamycin treatment does not induce permanent impairment of glucose metabolism. Somewhat surprisingly, chronic rapamycin also promoted increased accumulation of adipose tissue in high fat fed mice. However, this effect too was lost when rapamycin treatment was ended suggesting that this effect of rapamycin is also not permanent. The reversible nature of rapamycin's alterations of metabolic function suggests that these potentially detrimental side-effects might be managed through alternative dosing strategies or concurrent treatment options.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4221917PMC
http://dx.doi.org/10.18632/aging.100688DOI Listing

Publication Analysis

Top Keywords

chronic rapamycin
12
rapamycin treatment
12
rapamycin
10
glucose metabolism
8
glucose intolerance
8
intolerance insulin
8
insulin resistance
8
effects rapamycin
8
rapamycin permanent
8
high fat
8

Similar Publications

Background: Activation of the mTOR pathway is pivotal for microglia to induce and sustain neuroprotective functions (Ulland et al., 2017; Wang et al., 2022).

View Article and Find Full Text PDF

Background: A drug cocktail targeting different processes of aging was tested in an aging mouse model of Alzheimer's disease (AD) neuropathologic change as an intervention to improve behaviors corresponding to cognitive dysfunction in AD.

Method: A cocktail of acarbose/rapamycin/phenylbutyrate or a control treatment was administered (medicated vs. non-medicated chow) chronically to 22 months-old mice that received viral vector injections to induce amyloid and tau pathology in the hippocampus at 24 months of age.

View Article and Find Full Text PDF

Background: The bi-directional autophagy and inflammation network becomes progressively dysregulated with age, with systemic inflammation as a biomarker of this dysregulation including in Alzheimer's Disease (AD). We hypothesize that interventions which target the shared feature of systemic inflammation in the biology of aging and AD, via regulation of the autophagy-inflammation network, will prevent the conversion to disease pathogenesis in AD as well as improve healthspan and longevity in aging populations. While previous studies report benefits of mTOR inhibition including rapamycin in transgenic mouse models of familial AD, the present studies aim to evaluate this pathway in a model of sporadic, late onset AD (LOAD) and test the contribution of AMP-activated protein kinase (AMPK) as a critical regulator of the mTOR pathway.

View Article and Find Full Text PDF

Overexpression of the myeloid Src-family kinases Fgr and Hck has been linked to the development of acute myeloid leukemia (AML). Here we characterized the contribution of active forms of these kinases to AML cell cytokine dependence, inhibitor sensitivity, and AML cell engraftment in vivo. The human TF-1 erythroleukemia cell line was used as a model system as it does not express endogenous Hck or Fgr.

View Article and Find Full Text PDF

Regulatory T cells in CIDP and the inhibitory effect of rapamycin on them.

Hum Immunol

December 2024

From the Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China. Electronic address:

We aim to investigate the proportion and function of regulatory T (Treg) cells, as well as mTORC activity in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) patients. Peripheral blood mononuclear cells (PBMCs) from 15 CIDP and healthy controls (HC) were collected. Treg and responsive T (Tresp) cells were isolated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!