The inhibition of mTOR (mechanistic target of rapamycin) by the macrolide rapamycin has many beneficial effects in mice, including extension of lifespan and reduction or prevention of several age-related diseases. At the same time, chronic rapamycin treatment causes impairments in glucose metabolism including hyperglycemia, glucose intolerance and insulin resistance. It is unknown whether these metabolic effects of rapamycin are permanent or whether they can be alleviated. Here, we confirmed that rapamycin causes glucose intolerance and insulin resistance in both inbred and genetically heterogeneous mice fed either low fat or high fat diets, suggesting that these effects of rapamycin are independent of genetic background. Importantly, we also found that these effects were almost completely lost within a few weeks of cessation of treatment, showing that chronic rapamycin treatment does not induce permanent impairment of glucose metabolism. Somewhat surprisingly, chronic rapamycin also promoted increased accumulation of adipose tissue in high fat fed mice. However, this effect too was lost when rapamycin treatment was ended suggesting that this effect of rapamycin is also not permanent. The reversible nature of rapamycin's alterations of metabolic function suggests that these potentially detrimental side-effects might be managed through alternative dosing strategies or concurrent treatment options.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4221917 | PMC |
http://dx.doi.org/10.18632/aging.100688 | DOI Listing |
Alzheimers Dement
December 2024
McGill University, Montreal, QC, Canada.
Background: Activation of the mTOR pathway is pivotal for microglia to induce and sustain neuroprotective functions (Ulland et al., 2017; Wang et al., 2022).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Washington School of Medicine, Seattle, WA, USA.
Background: A drug cocktail targeting different processes of aging was tested in an aging mouse model of Alzheimer's disease (AD) neuropathologic change as an intervention to improve behaviors corresponding to cognitive dysfunction in AD.
Method: A cocktail of acarbose/rapamycin/phenylbutyrate or a control treatment was administered (medicated vs. non-medicated chow) chronically to 22 months-old mice that received viral vector injections to induce amyloid and tau pathology in the hippocampus at 24 months of age.
Alzheimers Dement
December 2024
University of Pittsburgh, Pittsburgh, PA, USA.
Background: The bi-directional autophagy and inflammation network becomes progressively dysregulated with age, with systemic inflammation as a biomarker of this dysregulation including in Alzheimer's Disease (AD). We hypothesize that interventions which target the shared feature of systemic inflammation in the biology of aging and AD, via regulation of the autophagy-inflammation network, will prevent the conversion to disease pathogenesis in AD as well as improve healthspan and longevity in aging populations. While previous studies report benefits of mTOR inhibition including rapamycin in transgenic mouse models of familial AD, the present studies aim to evaluate this pathway in a model of sporadic, late onset AD (LOAD) and test the contribution of AMP-activated protein kinase (AMPK) as a critical regulator of the mTOR pathway.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Suite 523, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
Overexpression of the myeloid Src-family kinases Fgr and Hck has been linked to the development of acute myeloid leukemia (AML). Here we characterized the contribution of active forms of these kinases to AML cell cytokine dependence, inhibitor sensitivity, and AML cell engraftment in vivo. The human TF-1 erythroleukemia cell line was used as a model system as it does not express endogenous Hck or Fgr.
View Article and Find Full Text PDFHum Immunol
December 2024
From the Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, China. Electronic address:
We aim to investigate the proportion and function of regulatory T (Treg) cells, as well as mTORC activity in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) patients. Peripheral blood mononuclear cells (PBMCs) from 15 CIDP and healthy controls (HC) were collected. Treg and responsive T (Tresp) cells were isolated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!