Objectives: Metallo-β-lactamase (MBL)-based resistance is a threat to the use of most β-lactam antibiotics. Multiple variants of the New Delhi MBL (NDM) have recently been reported. Previous reports indicate that the substitutions affect NDM activity despite being located outside the active site. This study compares the biochemical properties of seven clinically reported NDM variants.
Methods: NDM variants were generated by site-directed mutagenesis; recombinant proteins were purified to near homogeneity. Thermal stability and secondary structures of the variants were investigated using differential scanning fluorimetry and circular dichroism; kinetic parameters and MIC values were investigated for representative carbapenem, cephalosporin and penicillin substrates.
Results: The substitutions did not affect the overall folds of the NDM variants, within limits of detection; however, differences in thermal stabilities were observed. NDM-8 was the most stable variant with a melting temperature of 72°C compared with 60°C for NDM-1. In contrast to some previous studies, kcat/KM values were similar for carbapenem and penicillin substrates for NDM variants, but differences in kinetics were observed for cephalosporin substrates. Apparent substrate inhibition was observed with nitrocefin for variants containing the M154L substitution. In all cases, cefoxitin and ceftazidime were poorly hydrolysed with kcat/KM values <1 s(-1) μM(-1).
Conclusions: These results do not define major differences in the catalytic efficiencies of the studied NDM variants and carbapenem or penicillin substrates. Differences in the kinetics of cephalosporin hydrolysis were observed. The results do reveal that the clinically observed substitutions can make substantial differences in thermodynamic stability, suggesting that this may be a factor in MBL evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4291237 | PMC |
http://dx.doi.org/10.1093/jac/dku403 | DOI Listing |
Ann Clin Microbiol Antimicrob
December 2024
The Centre for Clinical Microbiology, University College London, London, UK.
Introduction: Colonisation and infection with Carbapenem-resistant Enterobacterales (CRE) in healthcare settings poses significant risks, especially for vulnerable patients. Genomic analysis can be used to trace transmission routes, supporting antimicrobial stewardship and informing infection control strategies. Here we used genomic analysis to track the movement and transmission of CREs within clinical and environmental samples.
View Article and Find Full Text PDFBMJ Open Diabetes Res Care
December 2024
Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands.
Introduction: Maturity-onset diabetes of the young (MODY) and neonatal diabetes mellitus (NDM) are the most prevalent causes of monogenic diabetes. MODY is an autosomal dominant condition with onset in childhood and young adulthood, while NDM is defined with diabetes onset within 6 months of age and can be caused by dominant, recessive, X-linked genes or by chromosomal abnormalities. Here, we describe a rare case of monogenic diabetes in a patient who is homozygous for an gene variant.
View Article and Find Full Text PDFBMJ Open
December 2024
Development Centre for Population Health, University of Leicester, Leicester, UK
Introduction: Understanding how RNA viral load changes (viral load kinetics) during acute infection in SARS-CoV-2 can help to identify when and which patients are most infectious. We seek to summarise existing data on the longitudinal RNA viral load kinetics of SARS-CoV-2 sampled from different parts of the respiratory tract (nose, nasopharynx, oropharynx, saliva and exhaled breath) and how this may vary with age, sex, ethnicity, immune status, disease severity, vaccination, treatment and virus variant.
Methods And Analysis: We will conduct a systematic review and meta-analysis, using studies identified through MEDLINE and EMBASE (via Ovid).
Lancet Microbe
November 2024
The Jenner Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK; Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan. Electronic address:
Background: An HIV-1 vaccine is long overdue. Although vaccine research focuses on the induction of broadly neutralising antibodies, challenging infections such as HIV-1 could require parallel induction of protective T cells. It is important to recognise that not all T cells contribute to protection equally.
View Article and Find Full Text PDFBrain
November 2024
Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!