Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field.

Science

Laboratoire d'Utilisation des Lasers Intenses (LULI), École Polytechnique, CNRS, Commissariat à l'Energie atomique et aux énergies alternatives (CEA), Université Pierre et Marie Curie (UPMC), F-91128 Palaiseau, France. Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia.

Published: October 2014

Although bipolar jets are seen emerging from a wide variety of astrophysical systems, the issue of their formation and morphology beyond their launching is still under study. Our scaled laboratory experiments, representative of young stellar object outflows, reveal that stable and narrow collimation of the entire flow can result from the presence of a poloidal magnetic field whose strength is consistent with observations. The laboratory plasma becomes focused with an interior cavity. This gives rise to a standing conical shock from which the jet emerges. Following simulations of the process at the full astrophysical scale, we conclude that it can also explain recently discovered x-ray emission features observed in low-density regions at the base of protostellar jets, such as the well-studied jet HH 154.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1259694DOI Listing

Publication Analysis

Top Keywords

poloidal magnetic
8
magnetic field
8
laboratory formation
4
formation scaled
4
scaled protostellar
4
protostellar jet
4
jet coaligned
4
coaligned poloidal
4
field bipolar
4
bipolar jets
4

Similar Publications

Soft x-ray tomography using L1 regularization for MHD modes with limited sight lines in JT-60SA.

Rev Sci Instrum

December 2024

National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Oroshi-cho, Toki 509-5292, Japan.

Soft x-ray (SX) tomography is a useful diagnostic in fusion research, and a multi-channel SX diagnostic will be installed in JT-60SA, the largest elongated tokamak in the world. However, in the SX diagnostic of JT-60SA, plasmas will be only viewed from the low field side and the upper side of plasmas; the sight lines are limited, which would be common in future devices as well as JT-60SA. This kind of limited sight lines is not preferred for SX tomography to investigate the spatial structure of magnetohydrodynamics (MHD) modes because inadequate information of plasmas makes artifacts in the reconstructed SX profiles.

View Article and Find Full Text PDF

Neutron measurement is the primary tool in the SPARC tokamak for fusion power (Pfus) monitoring, research on the physics of burning plasmas, validation of the neutronics simulation workflows, and providing feedback for machine protection. A demanding target uncertainty (10% for Pfus) and coverage of a wide dynamic range (>8 orders of magnitude going up to 5 × 1019 n/s), coupled with a fast-track timeline for design and deployment, make the development of the SPARC neutron diagnostics challenging. Four subsystems are under design that exploit the high flux of direct DT and DD plasma neutrons emanating from a shielded opening in a midplane diagnostic port.

View Article and Find Full Text PDF

Power exhaust is one of the central challenges in magnetically confined fusion plasmas. Radiative detachment can be employed to reduce particle and heat fluxes to the divertor target, mitigating divertor damage and erosion. However, accomplishing this for a non-axisymmetric machine such as Wendelstein 7-X is a non-trivial task because of the complex role of transport and plasma-wall interaction in a three-dimensional magnetic field topology.

View Article and Find Full Text PDF

Realization of a gas puff imaging system on the Wendelstein 7-X stellarator.

Rev Sci Instrum

September 2024

Laboratoire de Physique des Plasmas, Ecole Polytechnique-CNRS-Univ Paris-Sud-UPMC, Rte de Saclay, 91128 Palaiseau, France.

A system for studying the spatiotemporal dynamics of fluctuations in the boundary of the W7-X plasma using the "Gas-Puff Imaging" (GPI) technique has been designed, constructed, installed, and operated. This GPI system addresses a number of challenges specific to long-pulse superconducting devices, such as W7-X, including the long distance between the plasma and the vacuum vessel wall, the long distance between the plasma and diagnostic ports, the range of last closed flux surface (LCFS) locations for different magnetic configurations in W7-X, and management of heat loads on the system's plasma-facing components. The system features a pair of "converging-diverging" nozzles for partially collimating the gas puffed locally ≈135 mm radially outboard of the plasma boundary, a pop-up turning mirror for viewing the gas puff emission from the side (which also acts as a shutter for the re-entrant vacuum window), and a high-throughput optical system that collects visible emission resulting from the interaction between the puffed gas and the plasma and directs it along a water-cooled re-entrant tube directly onto the 8 × 16 pixel detector array of the fast camera.

View Article and Find Full Text PDF

A birdcage resonant antenna for helicon wave generation in TORPEX.

Rev Sci Instrum

September 2024

École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland.

A birdcage resonant helicon antenna is designed, mounted, and tested in the toroidal device TORPEX. The birdcage resonant antenna is an alternative to the usual Boswell or half-helical antenna designs commonly used for ∼10 cm diameter helicon sources in low temperature plasma devices. The main advantage of the birdcage antenna lies in its resonant nature, which makes it easily operational even at large scales, an appealing feature for the TORPEX device whose poloidal cross section is 40 cm in diameter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!