Transmission line cochlear models: improved accuracy and efficiency.

J Acoust Soc Am

Cluster of Excellence Hearing4all, Department of Medical Physics and Acoustics, Oldenburg University, 26111 Oldenburg, Germany

Published: October 2014

This paper presents an efficient method to compute the numerical solutions of transmission-line (TL) cochlear models, and its application on the model of Verhulst et al. The stability region of the model is extended by adopting a variable step numerical method to solve the system of ordinary differential equations that describes it, and by adopting an adaptive scheme to take in account variations in the system status within each numerical step. The presented method leads to improve simulations numerical accuracy and large computational savings, leading to employ TL models for more extensive simulations than currently possible.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.4896416DOI Listing

Publication Analysis

Top Keywords

cochlear models
8
transmission cochlear
4
models improved
4
improved accuracy
4
accuracy efficiency
4
efficiency paper
4
paper presents
4
presents efficient
4
efficient method
4
method compute
4

Similar Publications

Circadian rhythm disruptions exacerbate inner ear damage in a murine endolymphatic hydrops model.

FASEB J

January 2025

Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.

Meniere's disease (MD) is an inner ear disease characterized by endolymphatic hydrops (EH). Maintaining a regular daily routine is crucial for MD patients. However, the relationship between circadian rhythms and MD remains unclear.

View Article and Find Full Text PDF

Vertigo is a common symptom of various diseases that affects a large number of people worldwide. Current leading treatments for intractable peripheral vertigo are to intratympanically inject ototoxic drugs such as gentamicin to attenuate the semicircular canal function but inevitably cause hearing injury. Photodynamic therapy (PDT) is a noninvasive therapeutic approach by precisely targeting the diseased tissue.

View Article and Find Full Text PDF

Calcium and integrin-binding protein 2 (CIB2) and CIB3 bind to transmembrane channel-like 1 (TMC1) and TMC2, the pore-forming subunits of the inner-ear mechano-electrical transduction (MET) apparatus. These interactions have been proposed to be functionally relevant across mechanosensory organs and vertebrate species. Here, we show that both CIB2 and CIB3 can form heteromeric complexes with TMC1 and TMC2 and are integral for MET function in mouse cochlea and vestibular end organs as well as in zebrafish inner ear and lateral line.

View Article and Find Full Text PDF

Protective Effects of Fasudil Against Cisplatin-Induced Ototoxicity in Zebrafish: An In Vivo Study.

Int J Mol Sci

December 2024

Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea.

While cisplatin is an effective anti-tumor treatment, it induces ototoxicity through mechanisms involving DNA damage, oxidative stress, and programmed cell death. Rho-associated coiled-coil-containing protein kinase (ROCK) is essential for numerous cellular processes, including apoptosis regulation. Studies have suggested that ROCK inhibitors could prevent apoptosis and promote regeneration.

View Article and Find Full Text PDF

Mutations in the gene cause the most common form of human hereditary hearing loss, known as DFNB1. is expressed in two cell groups of the cochlea-epithelial cells of the organ of Corti and fibrocytes of the inner sulcus and lateral wall-but not by sensory hair cells or neurons. Attempts to treat mouse models of DFNB1 with AAV vectors mediating nonspecific expression have not substantially restored function, perhaps because inappropriate expression in hair cells and neurons could compromise their electrical activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!