In the real world, listeners often need to track multiple simultaneous sources in order to maintain awareness of the relevant sounds in their environments. Thus, there is reason to believe that simple single source sound localization tasks may not accurately capture the impact that a listening device such as a hearing aid might have on a listener's level of auditory awareness. In this experiment, 10 normal hearing listeners and 20 hearing impaired listeners were tested in a task that required them to identify and localize sound sources in three different listening tasks of increasing complexity: a single-source localization task, where listeners identified and localized a single sound source presented in isolation; an added source task, where listeners identified and localized a source that was added to an existing auditory scene, and a remove source task, where listeners identified and localized a source that was removed from an existing auditory scene. Hearing impaired listeners completed these tasks with and without the use of their previously fit hearing aids. As expected, the results show that performance decreased both with increasing task complexity and with the number of competing sound sources in the acoustic scene. The results also show that the added source task was as sensitive to differences in performance across listening conditions as the standard localization task, but that it correlated with a different pattern of subjective and objective performance measures across listeners. This result suggests that a measure of complex auditory situation awareness such as the one tested here may be a useful tool for evaluating differences in performance across different types of listening devices, such as hearing aids or hearing protection devices.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.4893932DOI Listing

Publication Analysis

Top Keywords

task listeners
12
listeners identified
12
identified localized
12
source task
12
listeners
8
hearing impaired
8
impaired listeners
8
sound sources
8
localization task
8
localized source
8

Similar Publications

EXPRESS: The Time Course of Cognitive Effort During Disrupted Speech.

Q J Exp Psychol (Hove)

January 2025

Hearing Aid Laboratory, Northwestern University, Department of Communication Sciences and Disorders Evanston, IL, USA.

Listeners often find themselves in scenarios where speech is disrupted, misperceived, or otherwise difficult to recognize. In these situations, many individuals report exerting additional effort to understand speech, even when repairing speech may be difficult or impossible. This investigation aimed to characterize cognitive effort across time during both sentence listening and a post-sentence retention interval by observing the pupillary response of participants with normal to borderline normal hearing in response to two interrupted speech conditions: sentences interrupted by gaps of silence or bursts of noise.

View Article and Find Full Text PDF

Despite extensive research on absolute pitch (AP), there remains no gold-standard task to measure its presence or extent. This systematic review investigated the methods of pitch-naming tasks for the classification of individuals with AP and examined how our understanding of the AP phenotype is affected by variability in the tasks used to measure it. Data extracted from 160 studies (N = 23,221 participants) included (i) the definition of AP, (ii) task characteristics, (iii) scoring method, and (iv) participant scores.

View Article and Find Full Text PDF

Baseline dependent differences in the perception of changes in visuomotor delay.

Front Hum Neurosci

January 2025

Center for Tactile Internet With Human-in-the-Loop, Technical University of Dresden, Dresden, Germany.

Introduction: The detection of, and adaptation to delayed visual movement feedback has been extensively studied. One important open question is whether the Weber-Fechner Laws hold in the domain of visuomotor delay; i.e.

View Article and Find Full Text PDF

The neural activity of auditory conscious perception.

Neuroimage

January 2025

Department of Neurology, Yale University; New Haven, CT, 06520, USA; Interdepartmental Neuroscience Program, Yale University; New Haven, CT, 06520, USA; Department of Neuroscience, Yale University; New Haven, CT, 06520, USA; Department of Neurosurgery, Yale University; New Haven CT, 06520, USA. Electronic address:

Although recent work has made headway in understanding the neural temporospatial dynamics of conscious perception, much of that work has focused on visual paradigms. To determine whether there are shared mechanisms for perceptual consciousness across sensory modalities, here we test within the auditory domain. Participants completed an auditory threshold task while undergoing intracranial electroencephalography.

View Article and Find Full Text PDF

Speech Enhancement for Cochlear Implant Recipients using Deep Complex Convolution Transformer with Frequency Transformation.

IEEE/ACM Trans Audio Speech Lang Process

February 2024

CRSS: Center for Robust Speech Systems; Cochlear Implant Processing Laboratory (CILab), Department of Electrical and Computer Engineering, University of Texas at Dallas, USA.

The presence of background noise or competing talkers is one of the main communication challenges for cochlear implant (CI) users in speech understanding in naturalistic spaces. These external factors distort the time-frequency (T-F) content including magnitude spectrum and phase of speech signals. While most existing speech enhancement (SE) solutions focus solely on enhancing the magnitude response, recent research highlights the importance of phase in perceptual speech quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!