Purpose: This study explored the value of flat detector C-arm CT-guidance system in performing percutaneous transthoracic needle biopsy (PTNB) for lung lesions in clinical practice.
Methods: A total of 110 patients with solid lung lesions were enrolled to undergo PTNB procedures. The mean diameter of lesions was 4.63 cm (range, 0.6-15cm). The needle path was carefully planned and calculated on the C-arm CT system, which acquired three-dimensional CT-like cross-sectional images. The PTNB procedures were performed under needle guidance with fluoroscopic feedbacks.
Results: Histopathologic tissue was successfully obtained from 108 patients with a puncture success rate of 98.2% (108/110). The diagnostic accuracy rate was found to be 96.3% (104/108). There was only one case of pneumothorax (0.9%) requiring therapy. The rates of mild pneumothorax and hemoptysis were low (12.0% and 6.5%, respectively). In addition, procedural time could be limited with this technique, which helped to reduce X-ray exposure.
Conclusion: Our study shows that C-arm CT-based needle guidance enables reliable and efficient needle positioning and progression by providing real-time intraoperative guidance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4463285 | PMC |
http://dx.doi.org/10.5152/dir.2014.13463 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
Nanofriction plays an important role in the performance and lifetime of n-type or p-type TMD-based semiconductor nanodevices. However, the mechanism of nanofriction in n-type and p-type TMD semiconductors under an electric field is still blurry. In this paper, monolayers of n-MoSe and p-WSe materials were prepared by chemical vapor deposition (CVD), and their nanofriction behavior under positive electric field was investigated.
View Article and Find Full Text PDFJ Clin Anesth
January 2025
Department of Anesthesiology, Sapporo Medical University School of Medicine, 291 South 1 West 16, Chuo-ku, Sapporo-shi, Hokkaido 060-8543, Japan.
Study Objective: We developed an innovative method for ultrasound-assisted thoracic epidural catheter placement and assessed its potential to reduce procedural duration for trainees.
Design: A cadaveric observational study and a clinical randomized controlled trial.
Setting: Sapporo Medical University Hospital.
Endocr Relat Cancer
January 2025
M Stan, Endocrinology, Mayo Clinic, Rochester, 55905, United States.
Imaging-guided percutaneous core needle biopsy (PCNB) is currently the most common technique for the investigation of potentially malignant bone lesions. It allows precise needle placement and better visual guidance, leading to improved diagnostic accuracy. Needle tract seeding (NTS) is a rare complication of biopsies in general, and its true incidence remains unknown.
View Article and Find Full Text PDFRadiol Imaging Cancer
January 2025
From the Department of Clinical Affairs, MediView XR, Cleveland, Ohio (M.E.); College of Medicine, Alfaisal University, Riyadh, Saudi Arabia (A.B.); and Department of Diagnostic Radiology, Section of Interventional Radiology, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195-5243 (S.K., K.G., C.M.).
Percutaneous tumor ablation has become a widely accepted and used treatment option for both soft and hard tissue malignancies. The current standard-of-care techniques for performing these minimally invasive procedures require providers to navigate a needle to their intended target using two-dimensional (2D) US or CT to obtain complete local response. These traditional image-guidance systems require operators to mentally transpose what is visualized on a 2D screen into the inherent three-dimensional (3D) context of human anatomy.
View Article and Find Full Text PDFDiagn Cytopathol
January 2025
Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA.
Background: Endobronchial ultrasound guided Transbronchial Needle Aspiration (EBUS-TBNA) is the predominant method for investigation of centrally located solitary pulmonary nodules. The method is associated with good to excellent diagnostic sensitivity and specificity with the positive predictive value of the test reaching 100% and reported negative predictive values for FNA of pulmonary nodules ranging from 53% to 97%. The impact of correlating cytologic results with imaging and clinical findings for improvement of negative predictive value has been poorly studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!