S-glutathionylation is a mechanism of signal transduction by which cells respond effectively and reversibly to redox inputs. The glutathionylation regulates most cellular pathways. It is involved in oxidative cellular response to insult by modulating the transcription factor Nrf2 and inducing the expression of antioxidant genes (ARE); it contributes to cell survival through nuclear translocation of NFkB and activation of survival genes, and to cell death by modulating the activity of caspase 3. It is involved in mitotic spindle formation during cell division by binding cytoskeletal proteins thus contributing to cell proliferation and differentiation. Glutathionylation also interfaces with the mechanism of phosphorylation by modulating several kinases (PKA, CK) and phosphatases (PP2A, PTEN), thus allowing a cross talk between the two processes of signal transduction. Glutathionylation of proteins may also act on cell metabolism by modulating enzymes involved in glycosylation, in the Krebs cycle and in mitochondrial oxidative phosphorylation. Perturbations in protein glutathionylation status may contribute to the etiology of many diseases, thus it is clear the importance to visualize the distribution of glutathionylated proteins in subcellular compartments. This chapter describes the immunofluorescence technique that permits simultaneous detection of glutathionylated proteins and their localization in cellular compartments, using multiple stained cell samples. By confocal laser microscopy analysis of the immunofluorescent cells it is possible to obtain detailed information of submicroscopic structures inside cells and tissues, and to perform correct co-localization analysis between two proteins. The association between glutathione, nuclear lamina, and cytoskeleton has been investigated by employing a helpful assay consisting on the in situ extraction of the cellular matrix from cultured dermal fibroblasts followed by multiple stainings with several primary antibodies. This protocol can be used for the detection of the intracellular distribution and expression of interest proteins and can be customized for a large variety of cells and tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-1441-8_28 | DOI Listing |
Front Pediatr
January 2025
Department of Neonatology, Children's Medical Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
Bronchopulmonary dysplasia is a prevalent respiratory disorder posing a significant threat to the quality of life in premature infants. Its pathogenesis is intricate, and therapeutic options are limited. Besides genetic coding, protein post-translational modification plays a pivotal role in regulating cellular function, contributing complexity and diversity to substrate proteins and influencing various cellular processes.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.
Class I glutaredoxins (GRXs) are nearly ubiquitous proteins that catalyse the glutathione (GSH)-dependent reduction of mainly glutathionylated substrates. In land plants, a third class of GRXs has evolved (class III). Class III GRXs regulate the activity of TGA transcription factors through yet unexplored mechanisms.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology Campus, Anna University, Chrompet, Chennai 600 044, Tamil Nadu, India. Electronic address:
Metabolic dysfunction-associated steatotic liver disease [MASLD] is a pervasive multifactorial health burden. Post-translational modifications [PTMs] of amino acid residues in protein domains demonstrate pivotal roles for imparting dynamic alterations in the cellular micro milieu. The crux of identifying novel druggable targets relies on comprehensively studying the etiology of metabolic disorders.
View Article and Find Full Text PDFActa Parasitol
January 2025
Edificio D, Facultad de Ciencias Químicas, LADISER Inmunología y Biología Molecular, Universidad Veracruzana, Orizaba, Veracruz, México.
Despite being the most relevant and critical option for managing Chagas disease, pharmacological therapy is currently limited by the availability of only two drugs, benznidazole and nifurtimox. Their effectiveness is further restricted in the chronic phase of the infection, as they induce severe side effects and require prolonged treatment. Additionally, the use of these drugs can lead to the emergence of substantial resistance problems, compounded by the potential natural resistance of some parasite isolates.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2025
National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
Oxidative stress plays a crucial role in organ aging and related diseases, yet the endogenous regulators involved remain largely unknown. This work highlights the importance of metabolic homeostasis in protecting against oxidative stress in the large intestine. By developing a low-input and user-friendly pipeline for the simultaneous profiling of five distinct cysteine (Cys) states, including free SH, total Cys oxidation (Sto), sulfenic acid (SOH), S-nitrosylation (SNO), and S-glutathionylation (SSG), we shed light on Cys redox modification stoichiometries and signaling with regional resolution in the aging gut of monkeys.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!