Background: The involvement of frontostriatal circuits in frontotemporal dementia (FTD) suggests that deep gray matter structures (DGM) may be affected in this disease.
Objective: We investigated whether volumes of DGM structures differed between patients with behavioral variant FTD (bvFTD), Alzheimer's disease (AD), and subjective complaints (SC) and explored relationships between DGM structures, cognition, and neuropsychiatric functioning.
Methods: For this cross-sectional study, we included 24 patients with FTD and matched them based on age, gender, and education at a ratio of 1:3 to 72 AD patients and 72 patients with SC who served as controls. Volumes of hippocampus, amygdala, thalamus, caudate nucleus, putamen, globus pallidus, and nucleus accumbens were estimated by automated segmentation of 3D T1-weighted MRI. MANOVA with Bonferroni adjusted post-hoc tests was used to compare volumes between groups. Relationships between volumes, cognition, and neuropsychiatric functioning were examined using multivariate linear regression and Spearman correlations.
Results: Nucleus accumbens and caudate nucleus discriminated all groups, with most severe atrophy in FTD. Globus pallidus volumes were smallest in FTD and discriminated FTD from AD and SC. Hippocampus, amygdala, thalamus, and putamen were smaller in both dementia groups compared to SC. Associations between amygdala and memory were found to be different in AD and FTD. Globus pallidus and nucleus accumbens were related to attention and executive functioning in FTD.
Conclusion: Nucleus accumbens, caudate nucleus, and globus pallidus were more severely affected in FTD than in AD and SC. The associations between cognition and DGM structures varied between the diagnostic groups. The observed difference in volume of these DGM structures supports the idea that next to frontal cortical atrophy, DGM structures, as parts of the frontal circuits, are damaged in FTD rather than in AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-141230 | DOI Listing |
Comput Med Imaging Graph
December 2024
Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China; Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China; Shanghai Engineering Research Center of Intelligent Imaging for Critical Brain Diseases, Shanghai, 200040, China; Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, 200040, China. Electronic address:
Cell Host Microbe
November 2024
Department of Experimental Oncology, Istituto Europeo di Oncologia-IRCCS, Milan 20139, Italy. Electronic address:
Immune checkpoint inhibitors (ICIs) improve outcomes in advanced melanoma, but many patients are refractory or experience relapse. The gut microbiota modulates antitumor responses. However, inconsistent baseline predictors point to heterogeneity in responses and inadequacy of cross-sectional data.
View Article and Find Full Text PDFBrain Behav
October 2024
Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
Background/objectives: This systematic review and meta-analysis aimed to investigate the role of magnetic susceptibility (χ) in deep gray matter (DGM) structures, including the putamen (PUT), globus pallidus (GP), caudate nucleus (CN), and thalamus, in the most common types of multiple sclerosis (MS) and relapsing-remitting MS (RRMS), using quantitative susceptibility mapping (QSM).
Methods: The literature was systematically reviewed up to November 2023, adhering to PRISMA guidelines. This study was conducted using a random-effects model to calculate the standardized mean difference (SMD) in QSM values between patients with RRMS and healthy controls (HCs).
J Neurol
October 2024
Department of Neurology, Brigham Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Rd, Mailbox, 9002L, Boston, MA, 02115-6128, USA.
Nature
August 2024
Big Data Institute, University of Oxford, Oxford, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!