AI Article Synopsis

  • The study investigated how human insulin and its analogues can protect against lifespan reduction and neuronal damage in the nematode Caenorhabditis elegans under high glucose conditions, similar to those found in diabetes.
  • Results showed that insulin treatments countered the adverse effects of high glucose, reducing reactive oxygen species (ROS) and advanced glycation end-products (AGEs), while enhancing the activity of protective enzymes like superoxide dismutase (SOD).
  • The beneficial effects of insulin were linked to a specific signaling pathway involving the daf-2 insulin receptor and the daf-16/FOXO transcription factor, which helps regulate detoxifying processes in the cells.

Article Abstract

Aims/hypothesis: The aim of this study was to determine the protective effects of human insulin and its analogues, B28Asp human insulin (insulin aspart) and B29Lys(ε-tetradecanoyl),desB30 human insulin (insulin detemir), against glucose-induced lifespan reduction and neuronal damage in the model organism Caenorhabditis elegans and to elucidate the underlying mechanisms.

Methods: Nematodes were cultivated under high glucose (HG) conditions comparable with the situation in diabetic patients and treated with human insulin and its analogues. Lifespan was assessed and neuronal damage was evaluated with regard to structural and functional impairment. Additionally, the activity of glyoxalase-1 and superoxide dismutase (SOD) and the formation of reactive oxygen species (ROS) and AGEs were determined.

Results: Insulin and its analogues reversed the life-shortening effect of HG conditions and prevented the glucose-induced neuronal impairment. Insulin treatment under HG conditions was associated with reduced concentration of glucose, as well as a reduced formation of ROS and AGEs, and increased SOD activity. These effects were dependent on the Forkhead box O (FOXO) homologue abnormal dauer formation (DAF)-16. Furthermore, glyoxalase-1 activity, which was impaired under HG conditions, was restored by human insulin. This was essential for the insulin-induced lifespan extension under HG conditions, as no change in lifespan was observed following either suppression or overexpression of glyoxalase-1.

Conclusions/interpretation: Human insulin and its analogues prevent the reduction in lifespan and neuronal damage caused by HG conditions. The effect of human insulin is mediated by a daf-2/insulin receptor and daf-16/FOXO-dependent pathway and is mediated by upregulation of detoxifying mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00125-014-3415-5DOI Listing

Publication Analysis

Top Keywords

human insulin
32
insulin analogues
16
insulin
12
neuronal damage
12
human
8
high glucose
8
glucose conditions
8
caenorhabditis elegans
8
insulin insulin
8
ros ages
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!