Nickel-containing superoxide dismutase (NiSOD) is a mononuclear cysteinate-ligated nickel metalloenzyme that catalyzes the disproportionation of superoxide into dioxygen and hydrogen peroxide by cycling between Ni(II) and Ni(III) oxidation states. All of the ligating residues to nickel are found within the first six residues from the N-terminus, which has prompted several research groups to generate NiSOD metallopeptide-based mimics derived from the first several residues of the NiSOD sequence. To assess the viability of using these metallopeptide-based mimics (NiSOD maquettes) to probe the mechanism of SOD catalysis facilitated by NiSOD, we computationally explored the initial step of the O2(-) reduction mechanism catalyzed by the NiSOD maquette {Ni(II)(SOD(m1))} (SOD(m1) = HCDLP CGVYD PA). Herein we use spectroscopic (S K-edge X-ray absorption spectroscopy, electronic absorption spectroscopy, and circular dichroism spectroscopy) and computational techniques to derive the detailed active-site structure of {Ni(II)(SOD(m1))}. These studies suggest that the {Ni(II)(SOD(m1))} active-site possesses a Ni(II)-S(H(+))-Cys(6) moiety and at least one associated water molecule contained in a hydrogen-bonding interaction to the coordinated Cys(2) and Cys(6) sulfur atoms. A computationally derived mechanism for O2(-) reduction using the formulated active-site structure of {Ni(II)(SOD(m1))} suggests that O2(-) reduction takes place through an apparent initial outersphere hydrogen atom transfer (HAT) from the Ni(II)-S(H(+))-Cys(6) moiety to the O2(-) molecule. It is proposed that the water molecule aids in driving the reaction forward by lowering the Ni(II)-S(H(+))-Cys(6) pK(a). Such a mechanism is not possible in NiSOD itself for structural reasons. These results therefore strongly suggest that maquettes derived from the primary sequence of NiSOD are mechanistically distinct from NiSOD itself despite the similarities in the structure and physical properties of the metalloenzyme vs the NiSOD metallopeptide-based models.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja5079514DOI Listing

Publication Analysis

Top Keywords

o2- reduction
12
nisod
10
superoxide dismutase
8
nisod metallopeptide-based
8
metallopeptide-based mimics
8
absorption spectroscopy
8
active-site structure
8
structure {niiisodm1}
8
niii-sh+-cys6 moiety
8
water molecule
8

Similar Publications

Self-supported ultrathin PtRuMoCoNi high-entropy alloy nanowires (HEANWs) were synthesized by a one-pot co-reduction method, whose peroxidase (POD)-like activity and catalytic mechanism were elaborated in detail. As expected, the PtRuMoCoNi HEANWs showed excellent POD-like activity. It can quickly catalyze the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB through decomposition of HO to superoxide radicals.

View Article and Find Full Text PDF

Kinetics of reformation of the S state capable of progressing to the S state after the O release by photosystem II.

Photosynth Res

January 2025

Department of Chemistry, Graduate School of Science and Technology, Proteo-Science Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan.

The active site for water oxidation in photosystem II (PSII) comprises a MnCaO cluster adjacent to a redox-active tyrosine residue (Tyr). During the water-splitting process, the enzyme transitions through five sequential oxidation states (S to S), with O evolution occurring during the STyr· to STyr transition. Chloride also plays a role in this mechanism.

View Article and Find Full Text PDF

Potato is cultivated all the year round in Pakistan. However, the major crop is the autumn crop which is planted in mid-October and contributes 80-85% of the total production. The abrupt climate change has affected the weather patterns all over the world, resulting in the reduction of the mean air temperature in autumn by almost 1.

View Article and Find Full Text PDF

GhWRKY207 improves drought tolerance through promoting the expression of GhCSD3 and GhFSD2 in Gossypium hirsutum.

Plant Sci

January 2025

National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China. Electronic address:

Tryptophan-arginine-lysine-tyrosine (WRKY) transcription factors are essential regulators of drought tolerance in multiple plants. However, whether and how GhWRKY207 modulates cotton response to drought stress is unclear. In this study, we determined that GhWRKY207 expression was high in leaves and induced by drought stress.

View Article and Find Full Text PDF

Inhibition of the invasive plant Ambrosia trifida by Sigesbeckia glabrescens extracts.

Ecotoxicol Environ Saf

January 2025

Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China. Electronic address:

Ambrosia trifida is an invasive weed that destroys the local ecological environment, and causes a reduction in population diversity and grassland decline. The evolution of herbicide resistance has also increased the difficulty of managing A. trifida, so interspecific plant competition based on allelopathy has been used as an effective and sustainable ecological alternative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!