A displacement measurement system using a fiber-optic interferometer fringe projector with a feedback control system is presented and demonstrated. The system utilizes the integrating bucket method to detect the desired phase or the displacement and Fresnel reflection signal to realize measurement of the disturbance and feed it back to the modulated signal of the laser at the same time. The continuous signal truly reflects the error information, as the output light and reflected light share the same optical path. Practical experiments validate the feasibility of this method.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.53.006206DOI Listing

Publication Analysis

Top Keywords

fiber-optic interferometer
8
interferometer fringe
8
feedback control
8
control system
8
sinusoidal phase-modulating
4
phase-modulating fiber-optic
4
fringe feedback
4
system
4
system displacement
4
displacement measurement
4

Similar Publications

Ultrashort pulse sources are complex and resource-intensive. To reduce overhead and simplify operations, we had previously developed a method to deliver ultra-short pulses through fiber-optic links to multiple locations and to characterize them remotely using a compact detector module. We created a pulse pair with varying delays at the central location using a pulse shaper before launching them into the fiber links and measured the first and second-order autocorrelations at the satellite location.

View Article and Find Full Text PDF

This paper presents an adaptive fast Fourier transform (adaptive FFT) demodulation scheme, aimed at enhancing the precision and noise suppression capability of signal processing in fiber-optic interferometric sensors. By adaptively optimizing the length of the acquired spectrum and dynamically adjusting the frequency domain resolution, the proposed scheme can precisely calculate the eigenfrequency of the reflected spectrum. Therefore, the adaptive FFT demodulation scheme can effectively enhance the extraction ability of phase quadrature demodulation signal.

View Article and Find Full Text PDF

Due to its simplicity, low cost, safety, and high precision, the fiber displacement interferometer has emerged as a highly promising and feasible method for measuring shock-induced vibrations. However, the harsh environments associated with such shocks pose significant challenges, including the need for resistance to fluctuations in light intensity, immunity to disturbances in the transmission fiber, and the capacity to conduct large-range, high-speed bidirectional measurements. To our knowledge, no existing methods adequately address all these requirements.

View Article and Find Full Text PDF

This article experimentally validates a high-sensitivity vector magnetic field (MF) sensor based on two parallel Fabry-Perot interferometers (FPIs). Firstly, two standard single-mode fibers are interposed into a capillary tube to constitute a cantilever beam structure FPI. FPI achieved a high axial strain sensitivity of 15.

View Article and Find Full Text PDF

The efficient immobilization of capture antibodies is crucial for timely pathogen detection during global pandemic outbreaks. Therefore, we proposed a silica-binding protein featuring core functional domains (cSP). It comprises a peptide with a silica-binding tag designed to adhere to silica surfaces and tandem protein G fragments (2C2) for effective antibody capture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!