Importance: In Huntington disease (HD) striatal neuron loss precedes and predicts motor signs or symptoms. Current imaging biomarkers lack adequate sensitivity for assessing the early stages of HD. Developing an imaging biomarker for HD spanning the time of onset of motor signs remains a major unmet research need. Intracellular proteins whose expression is altered by the mutant huntingtin protein may be superior markers for early HD stages.

Objective: To evaluate whether [18F]MNI-659 (2-(2-(3-(4-(2-[18F]fluoroethoxy)phenyl)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione), a novel phosphodiesterase 10 positron emission tomography (PET) ligand, is a sensitive marker for striatal changes in early HD.

Design, Setting, And Participants: A cohort of individuals with HD, including premanifest (pre-HD) or manifest with motor signs (mHD), underwent clinical assessments, genetic determination, [18F]MNI-659 PET imaging, and brain magnetic resonance imaging. Age-matched healthy volunteers (HVs) also received clinical assessments and PET and magnetic resonance imaging.

Main Outcomes And Measures: Binding potentials (BPnds) were estimated for brain regions of interest, specifically within the basal ganglia, and compared between participants with HD and the HVs and correlated with markers of HD severity and atrophy of basal ganglia nuclei.

Results: Eleven participants with HD (8 mHD and 3 pre-HD) and 9 HVs participated. Ten of 11 HD participants had known huntingtin CAG repeat length, allowing determination of a burden of pathology (BOP) score. One individual with HD declined CAG determination. All participants with mHD had relatively early-stage disease (4 with stage 1 and 4 with stage 2) and a Unified Huntington's Disease Rating Scale (UHDRS) total Motor subscale score of less than 50. The HD cohort had significantly lower striatal [18F]MNI-659 uptake than did the HV cohort (mean, -48.4%; P < .001). The HD cohort as a whole had a reduction in the basal ganglia BPnd to approximately 50% of the level in the HVs (mean, -47.6%; P < .001). The 3 pre-HD participants had intermediate basal ganglia BPnds. Striatal [18F]MNI-659 uptake correlated strongly with the severity of disease measured by the clinical scale (UHDRS Motor subscale; R = 0.903; P < .001), the molecular marker (BOP; R = 0.908; P < .001), and regional atrophy (R = 0.667; P < .05).

Conclusions And Relevance: As a promising striatal imaging biomarker, [18F]MNI-659 is potentially capable of assessing the extent of disease in early mHD. Furthermore, [18F]MNI-659 may identify early changes in medium spiny neurons and serve as a marker to predict conversion to mHD. Additional studies with larger, stratified cohorts of patients with HD and prospective studies of individuals with pre-HD are warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamaneurol.2014.1954DOI Listing

Publication Analysis

Top Keywords

basal ganglia
16
motor signs
12
phosphodiesterase positron
8
positron emission
8
emission tomography
8
[18f]mni-659 novel
8
huntington disease
8
imaging biomarker
8
clinical assessments
8
magnetic resonance
8

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Laboratory for Neuropathology, KU Leuven, Leuven, Belgium.

Background: In 43-63% of symptomatic Alzheimer's disease (AD) patients, there is an observed accumulation of misfolded alpha-synuclein (αSyn). Two primary αSyn subtypes have been identified based on the underlying spreading pattern of this pathology: caudo-rostral and amygdala-predominant. Interactions between pathological TDP-43, Tau, and αSyn can aggravate their spread and aggregation.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India.

Background: Parkinson's disease is a hypokinetic disorder characterized by selective loss of dopaminergic in substantia nigra pars compacta (SNPc) region of mid-brain. Dopaminergic degeneration of neurons is considered to be due to oxidative stress, neuroinflammation, neurons mitochondrial dysfunction and glutamate excitotoxicity etc. Inosine a purine nucleoside has been reported to produce anti-oxidant, anti-inflammatory and neuromodulatory actions in previous studies.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.

Background: Progressive supranuclear palsy (PSP) is a neurodegenerative disorder involving pathological deposition of tau that includes glial inclusions and specific regional vulnerability patterns. Therapeutic developments are hampered by incomplete understanding of disease mechanisms. Few studies have examined its cell type-specific effects.

View Article and Find Full Text PDF

Background: Huntington's disease (HD) is an autosomal dominant condition causing severe neurodegeneration in the striatum and the entorhinal cortex (EC). An epigenome wide association study of DNA methylation in HD by our group, identified potential hypomethylation at the PTGDS gene in the striatum. We aimed to validate this result through pyrosequencing, examining the locus in fine detail, and to assess the signal specificity by profiling multiple neurodegenerative diseases.

View Article and Find Full Text PDF

Background: Prolonged exposure to LED-light has been associated with impaired sleep quality and pathogenesis of various diseases, including Alzheimer's Disease (AD). Red light therapy has been indicated as a non-invasive way of reducing anxiety, mood and sleep optimization in neurodegenerative disorders but its endogenous mechanisms are insufficiently comprehended. Hence, we assessed the effects of scheduled red-light exposure on clock genes-Bmal1 and Per 1 expression, feacal boli frequency, and anxiety-like responses in prolonged LED-light exposed rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!